DOI QR코드

DOI QR Code

폴리프로필렌/케나프 섬유 펠트 복합체 물성에 대한 실란커플링제의 영향

Effect of Silane Coupling Agent on Physical Properties of Polypropylene (PP)/Kenaf Fiber (KF) Felt Composites

  • 구선교 (공주대학교 고분자공학전공(IT 융합기술연구소)) ;
  • 김유신 (공주대학교 고분자공학전공(IT 융합기술연구소)) ;
  • 김동원 (서연이화) ;
  • 김기성 (서연이화) ;
  • 김연철 (공주대학교 고분자공학전공(IT 융합기술연구소))
  • Ku, Sun Gyo (Major in Polymer Science and Engineering (Institute of IT Convergence Technology), Kongju National University) ;
  • Kim, Yu Shin (Major in Polymer Science and Engineering (Institute of IT Convergence Technology), Kongju National University) ;
  • Kim, Dong Won (Seoyounewha, Anyang) ;
  • Kim, Ki Sung (Seoyounewha, Anyang) ;
  • Kim, Youn Cheol (Major in Polymer Science and Engineering (Institute of IT Convergence Technology), Kongju National University)
  • 투고 : 2017.09.27
  • 심사 : 2017.11.07
  • 발행 : 2018.02.10

초록

폴리프로필렌(PP)과 케나프섬유(KF) 펠트의 상용성 개선을 위해 3종류의 실란 커플링제 1 wt%를 PP/KF 펠트에 처리하여 PP/KF와 PP/KF/폴리우레탄(PU) 펠트 복합체를 제조하였다. KF에 실란 커플링제 결합여부 확인을 위해 Si-O-Si와 Si-O-C 작용기를 적외선분광기(FT-IR)와 X선 광전자분광분석기(XPS)를 이용하여 측정하였다. 열적 특성분석을 위해 시차주사열용량분석기와 열중량분석기를 이용하였으며, 실란 커플링제가 처리된 PP/KF 복합체의 열안정성이 증가하는 결과를 보여주었다. PP/KF와 PP/KF/PU 복합체의 인장, 굴곡 그리고 충격특성을 분석한 결과 기계적 특성의 개선효과는 (3-Aminopropyl)triethoxysilane (APS) 1-2 wt%에서 가장 우수하였다. 이와 같은 기계적물성의 개선은 실란 작용기가 천연섬유와 결합하여 PP와 KF의 상용성을 향상시킨 결과로 해석할 수 있고, 인장시험 후 파단면의 SEM 결과를 통해 확인하였다.

키워드

polypropylene;kenaf fiber;polyurethane;silane coupling agent;felt composite

과제정보

연구 과제 주관 기관 : 한국산업기술진흥원, 한국에너지기술평가원(KETEP)

참고문헌

  1. K. J. Cha and H. B. Lee, Flow analysis of super engineering plastic plunger in automobile ABS, Proceedings of Korean Society of Manufacturing Process Engineers, October 7-8, Sacheon, Korea (2015).
  2. K. D. Lee and W. K. Lee, A development trend of bio-plastics in automotive, Auto J., 31, 44-51 (2009).
  3. B. S. Han, Light weight technologies of automotive parts for green car, Auto J., 33, 57-60 (2011).
  4. B. M. An, Sintering and heat treatment characteristics of Al-Cu-Mg powder metallurgy alloy for lightweight automotive parts, J. Korean Soc. Manuf. Technol. Eng., 23, 153-156 (2014).
  5. D. H. Cho, S. G. Lee, W. H. Park, and S. O. Han, Eco-friendly biocomposite materials using biofibers, Polym. Sci. Technol., 13, 460-476 (2002).
  6. H. D. Rozman, S. H. Shannon-Ong, A. B. Azizah, and G. S. Tay, Preliminary study of non-woven composite: Effect of needle punching and kenaf fiber loadings on non-woven thermoplastic composites prepared from kenaf and polypropylene fiber, J. Polym. Environ., 21, 1032-1039 (2013).
  7. D. H. Cho and H. J. Kim, Naturally cyclable biocomposites, Elast. Compos., 44, 13-21 (2009).
  8. S. J. Kim, C. S. Yoo, G. H. Kim, and C. S. Ha, Polypropylene-natural composites; Rheological properties during mixing and thermal properties, J. Adhes. Interface, 9, 24-29 (2008).
  9. J. S. Oh, S. H. Lee, S. H. Bumm, and K. J. Kim, Nano-kenaf cellulose effects on improved mechanical properties of polypropylene composite, Polymer(Korea), 37, 613-617 (2013).
  10. Y. Chen, O. Chiparus, L. Sun, I. Negulescu, D. V. Parikh, and T. A. Calamari, Natural fibers for automotive nonwoven composites, J. Ind. Text., 35, 47-62 (2005).
  11. B. H. Lee, H. J. Kim, and W. R. Yu, Fabrication of Long and Discontinuous Natural Fiber Reinforced Polypropylene Biocomposites and Their Mechanical Properties, Fiber. Polym., 10, 83-90 (2009).
  12. K. Y. Kim, S. J. Doh, J. N. Im, W. Y. Jeong, H. J. An, and D. Y. Lim, Effects of binder fibers and bonding processes on PET hollow fiber nonwovens for automotive cushion materials, Fiber. Polym., 14, 637-646 (2013).
  13. H. N. Dhakal, Z. Y. Zhang, M. O. W. Richardson, and O. A. Z. Errajjhi, The low velocity impact response of non-woven hemp fibre reinforced unsaturated polyester composite, Compos. Struct., 81, 559-567 (2007).
  14. S. J. Kim, C. S. Yoo, and C. S. Ha, Rheological properties during mixing and thermal properties of polypropylene/natural fiber composites: II. Effects of a compatibilizer, J. Adhes. Interface, 10, 23-29 (2009).
  15. J. M. Park, S. T. Quang, B. S. Hwang, and K. L. DeVries, Interfacial evaluation of modified Jute and Hemp fibers/polypropylene (PP)-maleic anhydride polypropylene copolymers (PP-MAPP) composites using micromechanical technique and nondestructive acoustic emission, Compos. Sci. Technol., 66, 2686-2699 (2006).
  16. N. Sgriccia, M. C. Hawley, and M. Misra, Characterization of natural fiber surfaces and natural fiber composites, Composites A, 39, 1632-1637 (2008).
  17. X. Li, L. G. Tabil, and S. Panigrahi, Chemical treatments of natural fiber for use in natural fiber-reinforced composites; A review, J. Polym. Environ., 15, 25-33 (2007).
  18. D. M. Panaitescu, C. A. Nicolae, Z. Vuluga, C. Vitelaru, C. G. Sanporean, C. Zaharia, D. Florea, and G. Vasilievici, Influence of hemp fibers with modified surface on polypropylene composites, J. Ind. Eng. Chem., 37, 137-146 (2016).
  19. Y. Xie, C. A. S. Hill, Z. Xiao, H. Militz, and C. Mai, Silane coulping agents used for natural fiber/polymer composites: A review, Composites A, 41, 806-819 (2010).
  20. G. S. Ahmed, M. Gilbert, S. Mainprize, and M. Rogerson, FTIR analysis of silane grafted high density polyethylene, Plast. Rubber Compos., 38, 13-20 (2009).
  21. H. Li, R. Wang, H. Hu, and W. Liu, Surface modification of self-healing poly(urea-formaldehyde) microcapsules using silane-coupling agent, Appl. Surf. Sci., 255, 1894-1900 (2008).
  22. J. W. Lee, J. H. Kim, S. H. Ji, K. S. Kim, and Y. C. Kim, Effect of thermally expandable microcapsule on the foaming behavior of HDPE/kenaf composite, Polymer(Korea), 39, 572-578 (2015).