Effect of Silane Coupling Agent on Physical Properties of Polypropylene (PP)/Kenaf Fiber (KF) Felt Composites

폴리프로필렌/케나프 섬유 펠트 복합체 물성에 대한 실란커플링제의 영향

  • Ku, Sun Gyo (Major in Polymer Science and Engineering (Institute of IT Convergence Technology), Kongju National University) ;
  • Kim, Yu Shin (Major in Polymer Science and Engineering (Institute of IT Convergence Technology), Kongju National University) ;
  • Kim, Dong Won (Seoyounewha, Anyang) ;
  • Kim, Ki Sung (Seoyounewha, Anyang) ;
  • Kim, Youn Cheol (Major in Polymer Science and Engineering (Institute of IT Convergence Technology), Kongju National University)
  • 구선교 (공주대학교 고분자공학전공(IT 융합기술연구소)) ;
  • 김유신 (공주대학교 고분자공학전공(IT 융합기술연구소)) ;
  • 김동원 (서연이화) ;
  • 김기성 (서연이화) ;
  • 김연철 (공주대학교 고분자공학전공(IT 융합기술연구소))
  • Received : 2017.09.27
  • Accepted : 2017.11.07
  • Published : 2018.02.10


In order to increase the compatibility of polypropylene (PP) and kenaf fiber (KF) felt, PP/KF and PP/KF/polyurethane (PU) felt composites were prepared by treating KF with three kinds of silane coupling agents. The concentration of silane coupling agents was fixed at 1 wt%. The chemical reaction between KF and silane coupling agents was confirmed by the existence of Si-O-Si and Si-O-C functional group bands appeared on FT-IR and X-ray photoelectron spectra (XPS). Thermal properties of PP/KF composites were investigated by DSC and TGA, and the thermal stability of PP/KF composites with treated KF increased. Based on tensile, flexural and impact properties of PP/KF and PP/KF/PU composites, 1-2 wt% of (3-aminopropyl)triethoxysilane (APS) contents were the optimum formulation as a compatibilizer. The tensile and flexural strength of the felt composites treated with the silane coupling agents were improved. This is mainly due to the improvement in the compatibility between PP and KF, which was confirmed by SEM images of the fractured surfaces after tension tests.


polypropylene;kenaf fiber;polyurethane;silane coupling agent;felt composite


Supported by : 한국산업기술진흥원, 한국에너지기술평가원(KETEP)


  1. K. J. Cha and H. B. Lee, Flow analysis of super engineering plastic plunger in automobile ABS, Proceedings of Korean Society of Manufacturing Process Engineers, October 7-8, Sacheon, Korea (2015).
  2. K. D. Lee and W. K. Lee, A development trend of bio-plastics in automotive, Auto J., 31, 44-51 (2009).
  3. B. S. Han, Light weight technologies of automotive parts for green car, Auto J., 33, 57-60 (2011).
  4. B. M. An, Sintering and heat treatment characteristics of Al-Cu-Mg powder metallurgy alloy for lightweight automotive parts, J. Korean Soc. Manuf. Technol. Eng., 23, 153-156 (2014).
  5. D. H. Cho, S. G. Lee, W. H. Park, and S. O. Han, Eco-friendly biocomposite materials using biofibers, Polym. Sci. Technol., 13, 460-476 (2002).
  6. H. D. Rozman, S. H. Shannon-Ong, A. B. Azizah, and G. S. Tay, Preliminary study of non-woven composite: Effect of needle punching and kenaf fiber loadings on non-woven thermoplastic composites prepared from kenaf and polypropylene fiber, J. Polym. Environ., 21, 1032-1039 (2013).
  7. D. H. Cho and H. J. Kim, Naturally cyclable biocomposites, Elast. Compos., 44, 13-21 (2009).
  8. S. J. Kim, C. S. Yoo, G. H. Kim, and C. S. Ha, Polypropylene-natural composites; Rheological properties during mixing and thermal properties, J. Adhes. Interface, 9, 24-29 (2008).
  9. J. S. Oh, S. H. Lee, S. H. Bumm, and K. J. Kim, Nano-kenaf cellulose effects on improved mechanical properties of polypropylene composite, Polymer(Korea), 37, 613-617 (2013).
  10. Y. Chen, O. Chiparus, L. Sun, I. Negulescu, D. V. Parikh, and T. A. Calamari, Natural fibers for automotive nonwoven composites, J. Ind. Text., 35, 47-62 (2005).
  11. B. H. Lee, H. J. Kim, and W. R. Yu, Fabrication of Long and Discontinuous Natural Fiber Reinforced Polypropylene Biocomposites and Their Mechanical Properties, Fiber. Polym., 10, 83-90 (2009).
  12. K. Y. Kim, S. J. Doh, J. N. Im, W. Y. Jeong, H. J. An, and D. Y. Lim, Effects of binder fibers and bonding processes on PET hollow fiber nonwovens for automotive cushion materials, Fiber. Polym., 14, 637-646 (2013).
  13. H. N. Dhakal, Z. Y. Zhang, M. O. W. Richardson, and O. A. Z. Errajjhi, The low velocity impact response of non-woven hemp fibre reinforced unsaturated polyester composite, Compos. Struct., 81, 559-567 (2007).
  14. S. J. Kim, C. S. Yoo, and C. S. Ha, Rheological properties during mixing and thermal properties of polypropylene/natural fiber composites: II. Effects of a compatibilizer, J. Adhes. Interface, 10, 23-29 (2009).
  15. J. M. Park, S. T. Quang, B. S. Hwang, and K. L. DeVries, Interfacial evaluation of modified Jute and Hemp fibers/polypropylene (PP)-maleic anhydride polypropylene copolymers (PP-MAPP) composites using micromechanical technique and nondestructive acoustic emission, Compos. Sci. Technol., 66, 2686-2699 (2006).
  16. N. Sgriccia, M. C. Hawley, and M. Misra, Characterization of natural fiber surfaces and natural fiber composites, Composites A, 39, 1632-1637 (2008).
  17. X. Li, L. G. Tabil, and S. Panigrahi, Chemical treatments of natural fiber for use in natural fiber-reinforced composites; A review, J. Polym. Environ., 15, 25-33 (2007).
  18. D. M. Panaitescu, C. A. Nicolae, Z. Vuluga, C. Vitelaru, C. G. Sanporean, C. Zaharia, D. Florea, and G. Vasilievici, Influence of hemp fibers with modified surface on polypropylene composites, J. Ind. Eng. Chem., 37, 137-146 (2016).
  19. Y. Xie, C. A. S. Hill, Z. Xiao, H. Militz, and C. Mai, Silane coulping agents used for natural fiber/polymer composites: A review, Composites A, 41, 806-819 (2010).
  20. G. S. Ahmed, M. Gilbert, S. Mainprize, and M. Rogerson, FTIR analysis of silane grafted high density polyethylene, Plast. Rubber Compos., 38, 13-20 (2009).
  21. H. Li, R. Wang, H. Hu, and W. Liu, Surface modification of self-healing poly(urea-formaldehyde) microcapsules using silane-coupling agent, Appl. Surf. Sci., 255, 1894-1900 (2008).
  22. J. W. Lee, J. H. Kim, S. H. Ji, K. S. Kim, and Y. C. Kim, Effect of thermally expandable microcapsule on the foaming behavior of HDPE/kenaf composite, Polymer(Korea), 39, 572-578 (2015).