Adsorption Characteristics of Acetone, Benzene, and Metylmercaptan in the Fixed Bed Reactor Packed with Activated Carbon Prepared from Waste Citrus Peel

폐감귤박으로 제조한 활성탄을 충전한 고정층 반응기에서 아세톤, 벤젠 및 메틸메르캅탄의 흡착특성

  • Kam, Sang-Kyu (Department of Environmental Engineering, Jeju National University) ;
  • Kang, Kyung-Ho (Livestock Division, Jeju Special Self-Governing Province) ;
  • Lee, Min-Gyu (Department of Chemical Engineering, Pukyong National University)
  • Received : 2017.09.15
  • Accepted : 2017.11.01
  • Published : 2018.02.10


Adsorption experiments of three target gases such as acetone, benzene, and methyl mercaptan (MM) were carried in a continuous reactor using the activated carbon prepared from waste citrus peel. In a single gas system, the breakthrough time obtained from using the activated carbon (WCAC) prepared from waste citrus peel. In a single gas system, the breakthrough time obtained from the breakthrough curve decreased with increasing the inlet concentration and flow rate, but increased with respect to the aspect ratio (L/D). Adsorbed amounts of the target gases by WCAC increased as a function of the inlet concentration and aspect ratio. However, adsorbed amounts with the increase of the flow rate were different depending upon target gases. Results from the breakthrough time and adsorbed amount showed that the affinity for WCAC was the highest in benzene, followed by acetone and then MM. On the other hand, in the binary and ternary systems, the breakthrough curve showed a roll-up phenomenon where the adsorbate having a small affinity for WCAC was replaced with the adsorbate with a high affinity. The adsorption of acetone on WCAC was more strongly affected when mixing with the nonpolar benzene than that of using sulfur compound MM.

폐감귤박으로 제조한 활성탄(WCAC)을 충전한 고정층 반응기에서 아세톤, 벤젠 및 메틸메르캅탄(MM)의 3종류의 대상가스에 대한 흡착특성을 검토하였다. 단일성분계의 경우에 파과곡선으로부터 구한 파과시간은 유입농도 및 유량이 증가할수록 감소하였으나 형상비(L/D)가 증가할수록 증가하였다. WCAC에 의한 대상가스의 흡착량은 유입농도 및 형상비가 증가할수록 증가하였으나 유량증가에 따른 흡착량은 대상가스에 따라 차이를 나타내었다. 파과시간 및 흡착량 결과에 의하면 WCAC에 대한 친화력은 벤젠이 가장 높고, 다음으로 아세톤 그리고 MM의 순서이었다. 한편, 2성분계 및 3성분계 혼합가스의 흡착 경우에 파과곡선은 WCAC와 친화력이 작은 흡착질은 친화력이 큰 흡착질로 치환되면서 roll-up 현상을 보였다. 그리고 WCAC에 의한 아세톤의 흡착은 황화합물인 MM보다 비극성인 벤젠과 혼합되어 있을 경우에 영향을 크게 받는 것으로 나타났다.



  1. J. W. Jeon, D. H. Lee, J. S. Seo, S. K. Kam, and M. G. Lee, Photocatalytic oxidation characteristics of benzene, toluene, and ethylbenzene by UV reactor inserted $TiO_2$-coated porous screw, Proc. Korean Environ. Sci. Soc. Conf., 22, 750-753 (2013).
  2. M. Kazemipour, M. Ansari, S. Tajrobehkar, M. Majdzadeh, and H. R. Kermani, Removal of lead, cadmium, zinc, and copper from industrial wastewater by carbon developed from walnut, hazelnut, almond, pistachio shell, and apricot stone, J. Hazard. Mater., 150, 322-327 (2008).
  3. M. A. Ahmad, W. M. A. Wan Daud, and M. K. Aroua, Adsorption kinetics of various gases in carbon molecular sieves (CMS) produced from palm shell, Colloids Surf. A, 312, 131-135 (2008).
  4. M. Valix, W. H. Cheung, and G. McKay, Preparation of activated carbon using low temperature carbonisation and physical activation of high ash raw bagasse for acid dye adsorption, Chemosphere, 56, 493-501 (2004).
  5. R. L. Tseng, S. K. Tseng, and F. C. Wu, Preparation of high surface area carbons from corncob using KOH combined with $CO_2$ gasification for the adsorption of dyes and phenols from water, Colloids Surf. A, 279, 69-78 (2006).
  6. A. Ahmad and B. Hameed, Reduction of COD and color of dyeing effluent from a cotton textile mill by adsorption onto bamboo-based activated carbon, J. Hazard. Mater., 172, 1538-1543 (2009).
  7. A. Khaled, A. E. Nemr, A. El-Sikaily, and O. Abdelwahab, Removal of direct N blue-106 from artificial textile dye effluent using activated carbon from orange peel: Adsorption isotherm and kinetic studies, J. Hazard. Mater., 165, 100-110 (2009).
  8. N. Kannan and M. M. Sundaram, 2001, Kinetics and mechanism of removal of methylene blue by adsorption on various carbons - A comparative study, Dyes Pigm., 51, 25-40 (2001).
  9. K. H. Kang, S. K. Kam, and M. G. Lee, Adsorption characteristics of activated carbon prepared from waste citrus peels by NaOH activation, J. Environ. Sci. Int., 16, 1279-1285 (2007).
  10. K. H. Kang, S. K. Kam, and M. G. Lee, Preparation of activated carbon from waste citrus peels by $ZnCl_2$, J. Environ. Sci. Int., 16, 1091-1098 (2007).
  11. S. K. Kam, K. H. Kang, and M. G. Lee, Characterisitics of activated carbon prepared from waste citrus peel by KOH activation, Appl. Chem. Eng., 28(6), 649-654 (2017).
  12. T. Cheng, Y. Jiang, Y. Zhang, and S. Liu, Prediction of breakthrough curves for adsorption on activated carbon fibers in a fixed bed, Carbon, 42, 3081-3085 (2004).
  13. S. Bashkova, A. Bagreev, and T. Bandosz, Adsorption of methyl mercaptan on activated carbons, Environ. Sci. Technol., 36, 2777-2782 (2002).
  14. Z. Huang, F. Kang, K. Liang, and J. Hao, Breakthrough of methylketone and benzene vapors in activated carbon fiber beds, J. Hazard. Mater., B98, 107-115 (2003).
  15. S. S. Kim, J. H. Kim, and S. W. Park, Adsorption analysis of benzene vapor in a fixed-bed of granular activated carbon, Korean Chem. Eng. Res., 47(4), 495-500 (2009).
  16. J.-H. Tsai, H.-M. Chiang, G.-Y. Huang, and H.-L. Chiang, Adsorption characteristics of acetone, chloroform and acetonitrile on sludge derived adsorbent, commercial granular activated carbon and activated carbon fibers, J. Hazard. Mater., 154, 1183-1191 (2008).
  17. J. K. Lim, S. W. Lee, S. K. Kam, D. W. Lee, and M. G. Lee, Adsorption characteristics of toluene vapor in fixed-bed activated carbon column, J. Environ. Sci. Int., 14, 61-69 (2005).
  18. S. W. Lee, S. K. Bae, J. H. Kwon, Y. S. Na, C. D. An, Y. S. Yoon, and S. K. Song, Correlations between pore structure of activated carbon and adsorption characteristics of acetone vapor, J. Korean Soc. Environ. Eng., 27, 620-625 (2005).
  19. M. G. Lee, S. W. Lee, and S. H. Lee, Comparison of vapor adsorption characteristics of acetone and toluene based on polarity in activated carbon fixed-bed reactor, Korean J. Chem. Eng., 23, 773-778 (2006).
  20. H. S. Kim and Y. S. Park, Binary component adsorption characteristics of benzene and toluene at the fixed-bed adsorption column with activated carbon, J. Korean Soc. Environ. Eng., 25, 977-983 (2003).
  21. J.-H. Yun, D.-K. Choi, and S.-H. Kim, Equilibria and dynamics for mixed vapors of BTX in an activated carbon bed, AIChE J., 45, 751-760 (1999).
  22. S. W. Lee, S. K. Kam, and M. G. Lee, Comparison of breakthrough characteristics for binary vapors composed of acetone and toluene based on adsorption intensity in activated carbon fixed-bed reactor, J. Ind. Eng. Chem., 13, 911-916 (2007).
  23. S. W. Lee, J. K. Cheon, H. J. Park, and M. G. Lee, Adsorption characteristics of binary vapors among acetone, MEK, benzene, and toluene, Korean J. Chem. Eng., 25, 1154-1159 (2008).
  24. M. G. Lee, S. W. Lee, S. K. Kam, and S. H. Lee, Variation of adsorption characteristics of binary vapor according to packing system of double-layer adsorption bed, J. Environ. Sci. Int., 21, 305-312 (2012).
  25. S. W. Lee, Y. S. Na, and M. G. Lee, Comparison of adsorption-desorption characteristics of major 10 kinds components consisting of gasoline vapor, J. Environ. Sci. Int., 23, 1593-1600 (2014).
  26. S. K. Kam, K. H. Kang, and M. G. Lee, Adsorption characteristics of acetone, benzene, and metylmercaptan by activated carbon prepared from waste citrus peel, Appl. Chem. Eng., 28(6), 663-669 (2017).
  27. K. S. Hwang, K. D. Choi, and Y. S. Kong, The thermal regeneration characteristics of volatile organic compounds on an activated carbon bed(I): Adsorption step, Korean. Chem. Eng. Res., 36, 159-168 (1998).
  28. J. J. Lee and H. Y. Yu, Adsorption characteristics of BEAM by granular activated carbon(II), J. Korean Soc. Environ. Eng., 20, 509-518 (1998).
  29. B. M. Min, K. P. Yoo, and S. H. Kim, Adsorption of CO and $CO_2$ on fixed bed of activated carbon impregnated with cuprous chloride, Korean Chem. Eng. Res., 32, 195-205 (1994).
  30. H. Hori, I. Tanaka, and T. Akiyama, Breakthrough time on activated carbon fluidized bed adsorbers, J. Air Pollut. Control Assoc., 38, 269-271 (1998).
  31. M. A. Lillo-Rodenas, A. J. Fletcher, K. M. Thomas, D. Cazorla-Amoros, and A. Linares-Solano, Competitive adsorption of a benzene-toluene mixture on activated carbons at low concentration, Carbon, 44, 1455-1463 (2006).
  32. S. Brosillon, M. H. Manero, and J. N. Foussard, Mass transfer in VOC adsorption on zeolite: Experimental and theoretical breakthrough curves, Environ. Sci. Technol., 35, 3571-3575 (2001).
  33. B. Dou, Q. Hu, J. Li, S. Qiao, and Z. Hao, Adsorption performance of VOCs in ordered mesoporous silicas with different pore structures and surface chemistry, J. Hazard. Mater., 186, 1615-1624 (2011).
  34. D. J. Kim, H. I. Lee, J. E. Yie, S. J. Kim, and J. M. Kim, Ordered mesoporous carbons: Implication of surface chemistry, pore structure and adsorption of methyl mercaptan, Carbon, 43 1868-1873 (2005).
  35. J. H. Yun, D. K. Choi, S. H. Kim, and H. Moon, Effects of non-ideal adsorption equilibria of gas mixtures on column dynamics, Korean J. Chem. Eng., 14, 369-376 (1997).
  36. J. H. Cho, S. Lee, and Y. W. Rhee, Activated carbon adsorption characteristics of multi-component volatile organic compounds in a fixed bed adsorption bed, Korean Chem. Eng. Res., 54, 239-247 (2016).