DOI QR코드

DOI QR Code

Study on the Simple Preparation Method of Honeycomb-structured Catalysts by Temperature-regulated Chemical Vapor Deposition

온도조절 화학기상증착법을 활용한 대용량 허니컴 구조촉매 제조 연구

  • Seo, Minhye (Plant Engineering Center, Institute for Advanced Engineering) ;
  • Kim, Soong Yeon (Plant Engineering Center, Institute for Advanced Engineering) ;
  • Kim, Young Dok (Department of Chemistry, Sungkyunkwan University) ;
  • Uhm, Sunghyun (Plant Engineering Center, Institute for Advanced Engineering)
  • 서민혜 (고등기술연구원 플랜트엔지니어링센터) ;
  • 김숭연 (고등기술연구원 플랜트엔지니어링센터) ;
  • 김영독 (성균관대학교 화학과) ;
  • 엄성현 (고등기술연구원 플랜트엔지니어링센터)
  • Received : 2017.09.26
  • Accepted : 2017.10.24
  • Published : 2018.02.10

Abstract

We report on the simple preparation method of large-scale structured catalysts by temperature-regulated chemical vapor deposition with a high cell-density ceramic honeycomb monolith. And the feasibility for dry reforming of methane catalysts was evaluated. The NiO/Cordierite (CDR) catalyst was prepared by controlling coating conditions at each temperature step, leading to a conformal deposition of NiO inside the cordierite honeycomb monolith with the cell density of 600 cpsi. The catalytic conversion of $CH_4$ and $CO_2$ for dry reforming of methane were about 83% and 90% with gas hourly space velocity of $10,000h^{-1}$ at $800^{\circ}C$, respectively. As a result, it exhibited that the temperature-regulated chemical vapor deposition method can be expedient for the preparation of large-scale structured catalysts.

본 연구에서는 대용량 구조 촉매의 제조 및 활용 가능성을 확인하고자 셀 밀도가 높은 세라믹 허니컴 구조체와 온도조절 화학기상증착법을 활용하여 촉매를 제조하고 건식 개질 반응에 대한 촉매 활성을 평가하였다. 셀 밀도 600 cpsi 코디어라이트 허니컴(CDR)을 대상으로 니켈을 코팅한 NiO/CDR 촉매는 코팅 조건과 시간을 조절함으로써 허니컴 구조체 셀 내부까지 충분한 균일 증착이 가능하였다, $800^{\circ}C$, 공간속도 $10,000h^{-1}$$CH_4$$CO_2$를 1 : 1로 주입한 조건에서 $CH_4$는 약 83%, $CO_2$는 약 90% 이상의 우수한 전환율을 보여 건식 개질 반응에 효과적으로 적용이 가능하다는 것을 확인하였다. 이 결과를 토대로 대면적, 대용량 촉매 제조 시 온도조절 화학기상증착법이 매우 유용하게 활용될 수 있음을 확인하였다.

Keywords

Acknowledgement

Supported by : 산업기술평가관리원(KEIT)

References

  1. F. Rezaei and P. Webley, Optimum structured adsorbents in gas separation processes, Chem. Eng. Sci., 64, 5182-5191 (2009).
  2. F. Rezaei and P. Webley, Optimal design of engineered gas adsorbents: pore-scale level, Chem. Eng. Sci., 69, 270-278 (2012).
  3. F. Akhtara, L. Andersson, S. Ogunwumi, N. Hedin, and L. Bergstroma, Structuring adsorbents and catalysts by processing of porous powders, J. Eur. Ceram. Soc., 34, 1643-1666 (2014).
  4. S. Mitchell, N.-L. Michels, and J. Perez-Ramirez, From powder to technical body: the undervalued science of catalyst scale up, Chem. Soc. Rev., 42, 6094-6112 (2013).
  5. M. Adamowska and P. D. Costa, Structured Pd/${\gamma}$-$Al_2O_3$ prepared by washcoated deposition on a ceramic honeycomb for compressed natural gas applications, J. Nanopart., 2015, 601941 (2015).
  6. J. K. Hochmuth, K. Wassermann, and R. J. Farrauto, Car exhaust cleaning, Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, Comprehensive Inorganic Chemistry II, 7, 505-523 (2013).
  7. S. W. Han, I. H. Kim, D. H. Kim, K. J. Park, E. J. Park, M. Jeoung, and Y. D. Kim, Temperature regulated-chemical vapor deposition for incorporating NiO nanoparticles into mesoporous media, Appl. Surf. Sci., 385, 597-604 (2016).
  8. I. H. Kim, H. O. Seo, E. J. Park, S. W. Han, and Y. D. Kim, Low temperature CO oxidation over iron oxide nanoparticles decorating internal structures of a mesoporous alumina, Sci. Rep., 7, 1-11 (2017).
  9. J. W. Han, J. S. Park, M. S. Choi, and H. Lee, Uncoupling the size and support effects of Ni catalysts for dry reforming of methane, Appl. Catal. B, 203, 625-632 (2017).
  10. F. R. Shamskar, M. Rezaei, and F. Meshkani, The influence of Ni loading on the activity and coke formation of ultrasound-assisted co-precipitated Ni-$Al_2O_3$ nanocatalyst in dry reforming of methane, Int. J. Hydrogen Energy, 42, 4155-4164 (2017).
  11. H. S. Bengaard, J. K. Norskov, J. Sehested, B. S. Clausen, L. P. Nielsen, A. M. Molenbroek, and J. R. R-Nielsen, Steam reforming and graphite formation on Ni catalysts, J. Catal., 209, 365-384 (2002).
  12. C. Liu, J. Ye, J. Jiang, and Y. Par, Progresses in the preparation of coke resistant Ni-based catalyst for steam and $CO_2$ reforming of methane, ChemCatChem, 3, 529-541 (2011).
  13. B. Caprariis, P. Filippis, V. Palma, A. Petrullo, A. Ricca, C. Ruocco, and M. Scarsella, Rh, Ru and Pt ternary perovskites type oxides $BaZr_{(1-x)}Me_xO_3$ for methane dry reforming, Appl. Catal. A, 517, 47-55 (2016).
  14. M. Jeong, S. Y. Kim, D. H. Kim, S. W. Han, I. H. Kim, M. Lee, Y. K. Hwang, and Y. D. Kim, High-performing and durable MgO/Ni catalysts via atomic layer deposition for $CO_2$ reforming of methane (CRM), Appl. Catal. A, 515, 45-50 (2016).
  15. H. Jeong, Dry reforming of methane over promoters added Ni/HY catalysts, Clean Technol., 23, 213-220 (2017).