DOI QR코드

DOI QR Code

Recent Trends of Using Alternative Nutrient Sources for Microalgae Cultivation as a Feedstock of Biodiesel Production

바이오디젤 생산원료로써 미세조류의 배양을 위한 대체 영양원 사용 기술

  • Dang, Nhat Minh (Department of Environmental Engineering and Energy, Myongji University) ;
  • Lee, Kisay (Department of Environmental Engineering and Energy, Myongji University)
  • Received : 2018.01.07
  • Accepted : 2018.01.23
  • Published : 2018.02.10

Abstract

Microalgae is considered as one of environmentally sustainable and potential feedstocks to produce biodiesels. However, recent studies on life cycle assessments (LCA) of microalgal buidiesels have shown that energy requirement is not small to produce biodiesel from microalgae, especially during cultivation stage. The costs for carbon sources, nutrients like nitrogen or phosphorous, and water for cultivation can contribute up to 80% of the total medium costs. In the present article, recent trends on the utilization of several promising nutrient sources such as municipal wastewaters, organic fertilizers, combustion exhaust emissions and organic solid wastes were reviewed, and the potential strategies to be used as substitutes of artificial culture media, especially for the biodiesel production, were discussed.

Keywords

Microalgae;biodiesel;cultivation;medium substitutes;nutrient sources

Acknowledgement

Grant : Development of Marine Microalgal Biofuel Production Technology

Supported by : Ministry of Oceans and Fisheries of Korea

References

  1. Y. Chisti, Biodiesel from microalgae, Biotechnol. Adv., 25, 294-306 (2007).
  2. R. Subramaniam, S. Dufreche, M. Zappi, and R. Bajpai, Microbial lipids from renewable resources: production and characterization, Ind. Microbiol. Biotechnol., 37, 1271-1287 (2010).
  3. C. Y. Chen, X. Q. Zhao, H. W. Yen, S. H. Ho, C. L. Cheng, D. J. Lee, F. W. Bai, and J. S. Chang, Microalgae based carbohydrates for biofuel production, Biochem. Eng. J., 78, 1-10 (2013).
  4. J. M. Marchetti, V. U. Miguel, and A. F. Errazu, Techno-economic study of different alternatives for biodiesel production, Fuel Process. Technol., 89(8), 740-748 (2008). https://doi.org/10.1016/j.fuproc.2008.01.007
  5. S. A. Scott, M. P. Davey, J. S. Dennis, I. Horst, C. J. Howe, D. J. Lea-Smith, and A. G. Smith, Biodiesel from algae: challenges and prospects, Curr. Opin. Biotechnol., 21, 277-286 (2010).
  6. B. Zhao, J. Ma, Q. Zhao, L. Laurens, E. Jarvis, S. Chen, and C. Frear, Efficient anaerobic digestion of whole microalgae and lipid-extracted microalgae residues for methane energy production, Bioresour. Technol., 161, 423-430 (2014).
  7. X. Li, H. Xu, and Q. Wu, Large-scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors, Biotechnol. Bioeng., 98, 764-771 (2007).
  8. M. K. Lam, I. S. Tan, and K. T. Lee, Utilizing lipid-extracted microalgae biomass residues for maltodextrin production, Chem. Eng. J., 235, 224-230 (2014).
  9. S. Dickinson, M. Mientus, D. Frey, A. Aminihajibashi, S. Ozturk, F. Shaikh, D. Sengupta, and M. M. El Halwagi, A review of biodiesel production from microalgae, Clean Technol. Environ. Policy, 19, 637-668 (2017).
  10. K. Takisawa, K. Kanemoto, M. Kartikawati, and Y. Kitamura, Overview of biodiesel production from microalgae, J. Dev. Sustain. Agric., 9, 120-128 (2014).
  11. K. Chojnacka and A. Noworyta, Evaluation of Spirulina sp. growth in photoautotrophic, heterotrophic and mixotrophic cultures, Enzyme Microb. Technol., 34, 461-465 (2004).
  12. H. C. Greenwell, L. M. L. Laurens, R. J. Shields, R. W. Lovitt, and K. J. Flynn, Placing microalgae on the biofuels priority list: A review of the technological challenges, J. R. Soc. Interface, 7, 703-726 (2010).
  13. F. Chen, High cell density culture of microalgae in heterotrophic growth. Trends Biotechnol., 14, 421-426 (1996).
  14. J. Doucha and K. Livansky, Production of high-density Chlorella culture grown in fermenters, J. Appl. Phycol., 24, 35-43 (2012).
  15. Z. Y. Wu and X. M. Shi, Optimization for high-density cultivation of heterotrophic Chlorella based on a hybrid neural network model, Lett. Appl. Microbiol., 44, 13-18 (2006).
  16. T. Heredia-Arroyo, W. Wei, R. Ruan, and B. Hu, Mixotrophic cultivation of Chlorella vulgaris and its potential application for the oil accumulation from non-sugar materials, Biomass Bioenergy, 35, 2245-2253 (2011).
  17. J. Folch, M. Lees, and G. H. Sloane Stanley, A simple method for the isolation and purification of total lipids from animal tissues, J. Biol. Chem., 226, 497-509 (1957).
  18. E. G. Bligh and W. J. Dy, A rapid method for total lipid extraction and purification, Can. J. Biochem. Physiol., 37, 911-917 (1959).
  19. A. Ebrahimian, H.-R. Kariminia, and M. Vosoughi, Lipid production in mixotrophic cultivation of Chlorella vulgaris in a mixture of primary and secondary municipal wastewater, Renew. Energy, 71, 502-508 (2014).
  20. A. P. Batista, L. Ambrosano, S. Graca, C. Sousa, P. A. Marques, B. Ribeiro, E. P. Botrel, P. Castro Neto, and L. Gouveia, Combining urban wastewater treatment with biohydrogen production: an integrated microalgae-based approach, Bioresour. Technol., 184, 230-235 (2014).
  21. L. Brennan and P. Owende, Biofuels from microalgaeda review of technologies for production, processing, and extractions of biofuels and co-products, Renew. Sustain. Energy Rev., 14, 557-577 (2010).
  22. N. Brown and A. Shilton, Luxury uptake of phosphorus by microalgae in waste stabilisation ponds: current understanding and future direction, Rev. Environ. Sci. Bio/Technol., 13, 321-328 (2014).
  23. J. K. Pittman, A. P. Dean, and O. Osundeko, The potential of sustainable algal biofuel production using wastewater resources, Bioresour. Technol., 102, 17-25 (2011).
  24. I. Rawat, R. Ranjith Kumar, T. Mutanda, and F. Bux, Dual role of microalgae: Phycoremediation of domestic wastewater and biomass production for sustainable biofuels production, Appl. Energy, 88, 3411-3424 (2011).
  25. J. Ruiz, P. D. Alvarez-Diaz, Z. Arbib, C. Garrido-Perez, J. Barragan, and J. A. Perales, Performance of a flat panel reactor in the continuous culture of microalgae in urban wastewater: prediction from a batch experiment, Bioresour. Technol., 127, 456-463 (2013).
  26. L. Zhu, Microalgal culture strategies for biofuel production: A review, Biofuels Bioprod. Bioref., 9(6), 801-814 (2015). https://doi.org/10.1002/bbb.1576
  27. K. Larsdotter, Microalgae for Phosphorus Removal from Wastewater in a Nordic Climate, PhD Dissertation, Royal Institute of Technology (KTH), Stockholm, Sweden (2006).
  28. M. Henze and Y. Comeau, Wastewater characterization. In: M. Henze, M. C. M. van Loosdrecht, G. A. Ekama, G. A., D. Brdjanovic (Eds.), Biological Wastewater Treatment: Principles Modelling and Design, pp. 33-52, IWA Publishing, London, UK (2008).
  29. S. Mobin and F. Alam, Biofuel production from algae utilizing wastewater. In: 19th Australasian Fluid Mechanics Conference, Australasian Fluid Mechanics Society (AFMS), December 8-11, Melbourne, Australia (2014).
  30. Y. Li, Y.-F. Chen, P. Chen, M. Min, W. Zhou, B. Martinez, J. Zhu, and R. Ruan, Characterization of a microalga Chlorella sp. well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production, Bioresour. Technol., 102(8), 5138-5144 (2011). https://doi.org/10.1016/j.biortech.2011.01.091
  31. S. Aslan and I. K. Kapdan, Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae, Ecol. Eng. 28(1), 64-70 (2006). https://doi.org/10.1016/j.ecoleng.2006.04.003
  32. W. Zhou, P. Chen, M. Min, X. Ma, J. Wang, R. Griffith, F. Hussain, P. Peng, Q. Xie, and Y. Li, Environment-enhancing algal biofuel production using wastewaters, Renew. Sustain. Energy Rev., 36, 256-269 (2014).
  33. F. Z. Mennaa, Z. Arbib, and J. A. Perales, Urban wastewater treatment by seven species of microalgae and an algal bloom: biomass production, N and P removal kinetics and harvestability, Water Res., 83, 42-51 (2015).
  34. M. P. Caporgno, A. Taleb, M. Olkiewicz, J. Font, J. Pruvost, J. Legrand, and C. Bengoa, Microalgae cultivation in urban wastewater: nutrient removal and biomass production for biodiesel and methane, Algal Res., 10, 232-239 (2015).
  35. K. M. Lam, M. Y. Iqram, Y. Uemura, J. Wei Lim, C. Gek Khoo, T. K. Lee, and H. Chyuan Ong, Cultivation of Chlorella vulgaris using nutrients source from domestic wastewater for biodiesel production: Growth condition and kinetic studies, Renew. Energy, 103, 197-207 (2017).
  36. H. X. Chang, Q. Fu, Y. Huang, A. Xia, Q. Liao, and X. Zhu, An annular photobioreactor with ion-exchange-membrane for nontouch microalgae cultivation with wastewater, Bioresour. Technol., 219, 668-676 (2016).
  37. C. M. Kuo, T. Y. Chen, T. H. Lin, C. Y. Kao, J. T. Lai, J. S. Chang, and C. S. Lin, Cultivation of Chlorella sp. GD using piggery wastewater for biomass and lipid production, Bioresour. Technol., 194, 326-333 (2015).
  38. G. Mujtaba, M. Rizwan, and K. Lee, Removal of nutrients and COD from wastewater using symbiotic co-culture of bacterium Pseudomonas putida and immobilized microalga Chlorella vulgaris, J. Ind. Eng. Chem., 49, 145-151 (2017).
  39. R. Misra, R. Roy, and H. Hiraoka, On-Farm Composting Methods, UN-FAO, Rome, Italy (2016).
  40. L. Zhu, E. Hiltunen, and Z. Li, Continuous production of high-value products, biodiesel and biogas from microalgae cultivated with livestock waste compost: A feasible study, J. Environ. Sci., 4(1), 1-4 (2015).
  41. O. Fenton and D. O. Uallachain, Agricultural nutrient surpluses as potential input sources to grow third generation biomass (microalgae): a review, Algal Res., 1, 49-56 (2012).
  42. W. Mulbry, S. Kondrad, C. Pizarro, and E. Kebede-Westhead, Treatment of dairy manure effluent using freshwater algae: algal productivity and recovery of manure nutrients using pilot-scale algal turf scrubbers, Bioresour. Technol., 99, 8137-8142 (2008).
  43. L. D. Zhu and E. Hiltunen, Application of livestock waste compost to cultivate microalgae for bioproducts production: A feasible framework, Renew. Sustain. Energy Rev., 54, 1285-1290 (2016).
  44. K. Kumaran, M. K. Lam, X. B. Tan, Y. Uemura, J. W. Lim, C. G. Khoo, and K. T. Lee, Cultivation of Chlorella vulgaris using plant-based and animal waste-based compost: A comparison study, Procedia Eng., 148, 679-686 (2016).
  45. M. K. Lam and K. T. Lee, Potential of using organic fertilizer to cultivate Chlorella vulgaris for biodiesel production, Appl. Energy, 94, 303-308 (2012).
  46. N. M. Dang and K. Lee, Decolorization of organic fertilizer using advanced oxidation process and its application for microalgae cultivation, J. Ind. Eng. Chem., https://doi.org/10.1016/j.jiec.2017.10.035 (2018). https://doi.org/10.1016/j.jiec.2017.10.035
  47. A. Banerjee, C. Guria, and S. K. Maiti, Fertilizer assisted optimal cultivation of microalgae using response surface method and genetic algorithm for biofuel feedstock, Energy, 115, 1272-1290 (2016).
  48. L. D. Zhu, Z. H. Li, D. B. Guo, F. Huang, Y. Nugroho, and K. Xia, Cultivation of Chlorella sp. with livestock waste compost for lipid production, Bioresour. Technol., 223, 296-300 (2017).
  49. P. J. Brandjes, J. de Wit, H. G. van der Meer, and H. van Keulen, Environmental Impact of Animal Manure Management, International Agriculture Centre, Wageningen, The Netherlands (1996).
  50. C. Ledda, A. Schievano, B. Scaglia, M. Rossoni, F. G. A. Fernandez, and F. Adani, Integration of microalgae production with anaerobic digestion of dairy cattle manure: an overall mass and energy balance of the process, J. Clean. Prod., 13(1), 103-112 (2016).
  51. M. Negoro, A. Hamasaki, Y. Ikuta, T. Makita, K. Hirayama, and S. Suzuki, Carbon dioxide fixation by microalgae photosynthesis using actual flue gas discharged from a boiler, Appl. Biochem. Biotechnol., 39(1), 643-653 (1993). https://doi.org/10.1007/BF02919025
  52. K. G. Zeiler, D. A. Heacox, S. T. Toon, K. L. Kadam, and L. M. Brown, The use of microalgae for assimilation and utilization of carbon dioxide from fossil fuel-fired power plant flue gas, Energy Convers. Manag., 36, 707-712 (1995).
  53. S. H. Ho, C. Y. Chen, D. J. Lee, and J. S. Chang, Perspectives on microalgal $CO_2$-emission mitigation systems-A review, Biotechnol. Adv., 29(2), 189-198 (2010). https://doi.org/10.1016/j.biotechadv.2010.11.001
  54. M. G. de Morais and J. A. V. Costa, Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor, J. Biotechnol., 129(3), 439-445 (2007). https://doi.org/10.1016/j.jbiotec.2007.01.009
  55. E. Hughes and J. R. Benemann, Biological fossil $CO_2$ mitigation, Energy Convers. Manag., 38, 467-473 (1997).
  56. BP, BP Statistical Review of World Energy, BP p.l.c., London, UK (2016).
  57. W. Y. Cheah, P. L. Show, J. S. Chang, T. C. Ling, and J. C. Juan, Biosequestration of atmospheric $CO_2$ and flue gas-containing $CO_2$ by microalgae., Bioresour. Technol., 184, 190-201 (2015).
  58. J. H. Duarte, E. G. de Morais, E. M. Radmann, and J. A. V. Costa, Biological $CO_2$ mitigation from coal power plant by Chlorella fusca and Spirulina sp., Bioresour. Technol., 234, 472-475 (2017).
  59. J. H. Duarte, L. S. Fanka, and J. A. V. Costa, Utilization of simulated flue gas containing $CO_2$, $SO_2$, NO and ash for Chlorella fusca cultivation, Bioresour. Technol., 214, 159-165 (2016).
  60. S. N. Hosseini, H. Shang, G. M. Ross, and J. A. Scott, Microalgae cultivation in a novel top-lit gas-lift open bioreactor, Bioresour. Technol., 192, 432-440 (2015).
  61. C. Y. Kao, T. Y. Chen, Y. B. Chang, T. W. Chiu, H. Y. Lin, C. D. Chen, J.-S. Chang, and C. S. Lin, Utilization of carbon dioxide in industrial flue gases for the cultivation of microalga Chlorella sp., Bioresour. Technol., 166, 485-493 (2014).
  62. Y. Jiang, W. Zhang, J. Wang, Y. Chen, S. Shen, and T. Liu, Utilization of simulated flue gas for cultivation of Scenedesmus dimorphus, Bioresour. Technol., 128, 359-364 (2013).
  63. A. Canales, A. Pareilleux, J. L. Rols, G. Goma, and A. Huyard, Decreased sludge production strategy for domestic wastewater treatment, Water Sci. Technol., 30, 97-106 (1994).
  64. M. Wang, K. A. Sahu, R. Bjorn, and P. Chul, Anaerobic co-digestion of microalgae Chlorella sp. and waste activated sludge, Bioresour. Technol., 142, 585-590 (2013).
  65. I. Krustok, E. Nehrenheim, M. Odlare, X. Liu, and S. Li, Cultivation of indigenous algae for increased biogas production. In: International Conference on Applied Energy, July 1-4, Preotria, South Africa (2013).
  66. P. Ramsunda, A. Gldhe, P. Singh, K. Pillay, and F. Bux, Evaluation of waste activated sludge as a potential nutrient source for cultivation of Chlorella sorokiniana, Algal Res., 28, 108-117 (2017).
  67. L. Wang, J. L. Li, Q. Y. Zhao, W. Wei, and Y. H. Sun, Comparative study of wastewater treatment and nutrient recycle via activated sludge, microalgae and combination systems, Bioresour. Technol., 211, 1-5 (2016).
  68. G. Mujtaba and K. Lee, Advanced treatment of wastewater using symbiotic co-culture of microalgae and bacteria. Appl. Chem. Eng., 27(1), 1-9 (2016). https://doi.org/10.14478/ace.2016.1002
  69. G. Kim, G. Mujtaba, M. Rizwan, and K. Lee, Environmental stress strategies for stimulating lipid production from microlagae for biodiesel. Appl. Chem. Eng., 25(6), 553-558 (2014). https://doi.org/10.14478/ACE.2014.1125
  70. G. Mujtaba and K. Lee, Treatment of real wastewater using co-culture of immobilized Chlorella vulgaris and suspended activated sludge, Water Res., 120, 174-184 (2017).