DOI QR코드

DOI QR Code

Synthesis, Characterization and Catalytic Evaluation of Zinc Fluorides for Biodiesel Production

  • Received : 2017.09.08
  • Accepted : 2017.12.03
  • Published : 2018.02.20

Abstract

The potential of zinc fluorides with different molar ratios of Zn/F was applied as a solid catalyst in the simultaneous reaction of transesterification and esterification of crude palm oil (CPO) for biodiesel production. These materials were prepared by the fluorolytic sol-gel technique with different fluorine contents. The resulting samples were investigated using elemental analysis, XRD, FT-IR, TG/DTG, $N_2$ physisorption measurements and SEM. The results exhibited that the presence of fluorine strongly affected the catalytic activity in the biodiesel production. The catalysts with smaller fluorine contents (${\leq}1$) showed the best performance in all of the observed samples, yields from 92.94 to 89.95, 87.38 and 85.21% with increasing fluorine contents, respectively. The yield toward the formation of biodiesel depended on the phase and particle sizes of catalysts, but it was not influenced by surface area, pore size, and volume of the samples. The recovered catalyst showed a gradual decrease in activity over three cycles of same reactions.

Keywords

References

  1. Soltani, S.; Rashid, U.; Al-Resayes, S. I.; Nehdi, I. A., Energy Convers. Manag. 2017, 141, 183. https://doi.org/10.1016/j.enconman.2016.07.042
  2. Onoji, S. E.; Iyuke, S. E.; Igbafe, A. I.; Nkazi, D. B.; Energy Convers. Manag. 2016, 110, 125. https://doi.org/10.1016/j.enconman.2015.12.002
  3. Helwani, Z., Aziz, N., Kim, J., Othman, M.R. Renew. Energ. 2016, 86, 68. https://doi.org/10.1016/j.renene.2015.07.094
  4. Likozar, B.; Pohar, A.; Levec, J. Fuel Process. Technol. 2016, 142, 326. https://doi.org/10.1016/j.fuproc.2015.10.035
  5. Goudarzi, M.B.; Boldor, D.; Nde, D. B. Bioresour. Technol. 2016, 201, 97. https://doi.org/10.1016/j.biortech.2015.11.028
  6. Amani, H.; Asif, M.; Hameed, B. H. J. Taiwan Inst. Chem. Eng. 2016, 58, 226. https://doi.org/10.1016/j.jtice.2015.07.009
  7. Rashed, M. M.; Kalam, M. A.; Masjuki, H. H.; Mofijur, M.; Rasul, M. G.; Zulkifli, N. W. M. Depart. Ind. Crops Prod. 2016, 79, 70. https://doi.org/10.1016/j.indcrop.2015.10.046
  8. Hidalgo, P.; Ciudad, G.; Mittelbach, M.; Navia, R. Fuel 2015, 153, 544. https://doi.org/10.1016/j.fuel.2015.03.039
  9. Mohammed, N. I.; Kabbashi, N. A.; Alam, Md. Z.; Mirghani, M. E. S. J. Taiwan Inst. Chem. Eng. 2016, 63, 243. https://doi.org/10.1016/j.jtice.2016.03.007
  10. Ezzah-Mahmudah, S.; Lokman, I. M.; Saiman, M. I.; Taufiq-Yap, Y. H. Energy Convers. Manag. 2016, 126, 124. https://doi.org/10.1016/j.enconman.2016.07.072
  11. Fu, J.; Li, Z.; Xing, S.; Wang, Z.; Miao, C.; Lv, P.; Yuan, Z. Fuel 2016, 181, 1058.
  12. Ma, Y.; Wang, Q.; Gao, Z.; Sun, X.; Wang, N.; Niu, R.; Ma, H. Renew. Energ. 2016, 86, 643. https://doi.org/10.1016/j.renene.2015.08.079
  13. Shi, G.; Yu, F.; Wang, Y.; Pan, D.; Wang, H.; Li, R. Renew. Energ. 2016, 92, 22. https://doi.org/10.1016/j.renene.2016.01.094
  14. Sani, Y. M.; Alaba, P. A.; Raji-Yahya, A. O.; AbdulAziza, A. R.; Daud, W. M. A. W. J. Taiwan Inst. Chem. Eng. 2016, 59, 195. https://doi.org/10.1016/j.jtice.2015.07.016
  15. Han, Y. Z.; Hong, L.; Wang, X. Q.; Liu, J. Z.; Jiao, J.; Luo, M.; Fu, Y. J. Ind. Crops Prod. 2016, 89, 332. https://doi.org/10.1016/j.indcrop.2016.05.015
  16. Zhang, D. Y.; Duan, M. H.; Yao, X. H., Fu, Y. J.; Zu, Y. G. Fuel 2016, 172, 293. https://doi.org/10.1016/j.fuel.2015.12.020
  17. Sani, Y. M.; Alaba P. A.; Raji-Yahya, A. O.; AbdulAziza A. R.; Daud, W. M. A. W. J. Taiwan Inst. Chem. Eng. 2016, 60, 247. https://doi.org/10.1016/j.jtice.2015.10.010
  18. Vieira, S. S.; Magriotis, Z. M.; Ribeiro, M. F.; Graca, I.; Fernandes, A.; Lopes, J. M. F. M.; Coelho, S. M.; Santos, N. Ap. V.; Saczk, A. Ap. Microporous and Mesoporous Material 2015, 201, 160. https://doi.org/10.1016/j.micromeso.2014.09.015
  19. Wuttke, S.; Coman, S. M.; Krohnert, J.; Jentoft, F. C.; Kemnitz E. Catal. Today 2010, 152, 2. https://doi.org/10.1016/j.cattod.2009.10.008
  20. Coman, S. M.; Parvulescu, V. I.; Wuttke, S.; Kemnitz, E., ChemCatChem. 2010, 2, 92. https://doi.org/10.1002/cctc.200900205
  21. Candu, N.; Wuttke, S.; Kemnitz, E.; Coman, S. M.; Parvulescu, V. I. Appl. Catal. A: Gen. 2011, 391, 169. https://doi.org/10.1016/j.apcata.2010.08.004
  22. Troncea, S. B.; Wuttke, S.; Kemnitz, E.; Coman, S. M.; Parvulescu, V. A. Appl. Catal. B: Environ. 2011, 107, 260. https://doi.org/10.1016/j.apcatb.2011.07.021
  23. Telleria, I. A.; Hemmann, F.; Jager, C.; Arias, P. L.; Kemnitz, E. J. Catal. 2013, 305, 81. https://doi.org/10.1016/j.jcat.2013.05.005
  24. Lide D. R., Handbook of Chemistry and Physics, CRC Press, 2003-2004.
  25. Li, H.; Niu, N. S.; Lu, C.; Li J. Fuel 2016, 176, 63. https://doi.org/10.1016/j.fuel.2016.02.067
  26. Guo, Y.; Wuttke, S.; Vimont, A.; Daturi, M.; Lavalley, J. C.; Teinz, K.; Kemnitz, E. J. Mater. Chem. 2012, 22, 14587. https://doi.org/10.1039/c2jm31357j