Genome Size Estimation of the Two Wing Morphs of Vollenhovia emeryi (Hymenoptera: Myrmicinae)

에메리개미 (Vollenhovia emeryi Wheeler)의 날개이형체의 유전체 크기 추정

  • 노푸름 (이화여자대학교 에코과학부) ;
  • 박소연 (이화여자대학교 에코과학부) ;
  • 최재천 (이화여자대학교 에코과학부) ;
  • 정길상 (국립생태원)
  • Received : 2018.09.12
  • Accepted : 2018.11.08
  • Published : 2018.12.01


In Vollenhovia emeryi (Hymenoptera: Myrmicinae), the queen and the male are known to be clonally reproduced. Its colonies can be classified into the two morphs with the wing length of the queen caste. The morph with normal wings is called the long-winged and the other the short-winged that is brachypterous. Even though the two morphs are considered a species, investigation on the species status of the two morphs was suggested with natural separation in nature and the distinctive wing morphology. It has yet to be determined whether the clonally reproduced queen caste is haploid or diploid. Our data clearly show that the two morphs are the same species and the queen caste is diploid on the basis of the genome size data comparison.

OOGCBV_2018_v57n4_317_f0001.png 이미지

Fig. 1. Two morphological types of V. emeryi queen: (a) long-winged morph (L-queen) and (b) short-winged morph (S-queen).

OOGCBV_2018_v57n4_317_f0002.png 이미지

Fig. 2. Flow cytometric analysis of V. emeryi two wing morphs. As the internal standard, D. melanogaster (D) was added in queen and worker samples, and queen (Q) with the corresponding wing morph with sampled male was added in the male samples. (A) Long-winged queen (B) Short-winged queen (C) Long-winged worker (D) Short-winged worker (E) Long-winged male (F) Short-winged male. Vertical axis: number of nuclei and horizontal axis: fluorescence intensity.

OOGCBV_2018_v57n4_317_f0003.png 이미지

Fig. 3. Amplification results of the Wolbachia specific PCR. The size of the PCR amplicons was examined with the 100 bp ladder.

Table 1. Sampling localities and geographical information of the V. emeryi colonies

OOGCBV_2018_v57n4_317_t0001.png 이미지


Supported by : National Research Foundation of Korea (NRF), National Institute of Ecology


  1. Adachi-Hagimori, T., Miura, K., Stouthamer, R., 2008. A new cytogenetic mechanism for bacterial endosymbiont-induced parthenogenesis in Hymenoptera. P. R. Soc. B. 275, 2667-2673.
  2. Dolezel, J., Bartos, J., 2005. Plant DNA flow cytometry and estimation of nuclear genome size. Ann. Bot. London 95, 99-110.
  3. Dolezel, J., Bartos, J., Voglmayr, H., Greilhuber, J., 2003. Nuclear DNA content and genome size of trout and human. Cytometry 51, 127.
  4. Galbraith, D.W., Harkins, K.R., Maddox, J.M., Ayres, N.M., Sharma, D.P., Firoozabady, E., 1983. Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220, 1049-1051.
  5. Giorgini, M., Bernardo, U., Monti, M., Nappo, A., Gebiola, M., 2010. Rickettsia symbionts cause parthenogenetic reproduction in the parasitoid wasp Pnigalio soemius (Hymenoptera: Eulophidae). Appl. Environ. Microb. 76, 2589-2599.
  6. Jeong, G., Lee, K., Choi, J., Hwang, S., Park, B., Kim, W., Choi, Y., Park, I., Kim, J., 2009. Incidence of Wolbachia and Cardinium endosymbionts in the Osmia community in Korea. J. Microbiol. 47, 28-32.
  7. Jeong, G., Suh, E., 2008. Wolbachia-induced reproductive anomalies and their future applications. Entomol. Res. 38, 41-48.
  8. Kim, J., Sebring, A., Esch, J.J., Kraus, M.E., Vorwerk, K., Magee, J., Carroll, S.B., 1996. Integration of positional signals and regulation of wing formation and identity by Drosophila vestigial gene. Nature 382, 133-138.
  9. Kinomura, K., Yamauchi, K., 1994. Frequent occurrence of gynandromorphs in the natural population of the ant Vollenhovia emeryi (Hymenoptera: Formicidae). Insect. Soc. 41, 273-278.
  10. Kobayashi, K., Hasegawa, E., Ohkawara, K., 2008. Clonal reproduction by males of the ant Vollenhovia emeryi (Wheeler). Entomol. Sci. 11, 167-172.
  11. Kobayashi, K., Hasegawa, E., Ohkawara, K., 2011. No gene flow between wing forms and clonal reproduction by males in the long-winged form of the ant Vollenhovia emeryi. Insect. Soc. 58, 163-168.
  12. Kobayashi, K., Tamura, K., Okamoto, M., Hasegawa, E., Ohkawara, K., 2012. Phylogenetic relationships among populations of Vollenhovia ants, with particular focus on the evolution of wing morphology. Ann. Entomol. Soc. Am. 105, 454-461.
  13. Kubota, M., 1984. Anomalous female wings in Vollenhovia emeryi Wheeler. Ari 12, 2-3.
  14. Kumar, S., Nei, M., Dudley, J., Tamura, K., 2008. MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief. Bioinform. 9, 299-306.
  15. Kumar, S., Tamura, K., Nei, M., 1994. MEGA: molecular evolutionary genetics analysis software for microcomputers. Comput. Appl. Biosci. 10, 189-191.
  16. Noh, P., 2014. Population structure and microbiota of Vollenhovia emeryi Wheeler (Hymenoptera: Myrmicinae). MSc thesis, Ewha Womans University.
  17. Ohkawara, K., Nakayama, M., Satoh, A., Trindl, A., Heinze, J., 2006. Clonal reproduction and genetic caste differences in a queen-polymorphic ant, Vollenhovia emeryi. Biol. Lett. 2, 359-363.
  18. Parchem, R.J., Perry, M.W., Patel, N.H., 2007. Patterns on the insect wing. Curr. Opin. Genet. Dev. 17, 300-308.
  19. Scotland, R.W., Olmstead, R.G., Bennett, J.R., 2003. Phylogeny reconstruction: The role of morphology. Syst. Biol. 52, 539-548.
  20. Tulgetske, G., 2010. Investigations into the mechanisms of Wolbachia-induced parthenogenesis and sex determination in the parasitoid wasp, Trichogramma. Ph.D. thesis, University of California Riverside.
  21. Whiting, M.F., Bradler, S., Maxwell, T., 2003 Loss and recovery of wings in stick insects. Nature 421, 264-267.