DOI QR코드

DOI QR Code

마이크로칼럼에서 변형된 4중극 디플렉터와 8중극 디플렉터의 스캔 영역 비교

Study on the Scan Field of Modified Octupole and Quadrupole Deflector in a Microcolumn

  • 김영철 (을지대학교 안경광학과) ;
  • 김호섭 (선문대학교 정보디스플레이학과) ;
  • 안승준 (선문대학교 정보디스플레이학과) ;
  • 오태식 (선문대학교 정보디스플레이학과) ;
  • 김대욱 (선문대학교 정보디스플레이학과)
  • Kim, Young Chul (Department of Optometry, Eulji University) ;
  • Kim, Ho-Seob (Department of Information Display, Sun Moon University) ;
  • Ahn, Seong Joon (Department of Information Display, Sun Moon University) ;
  • Oh, Tae-Sik (Department of Information Display, Sun Moon University) ;
  • Kim, Dae-Wook (Department of Information Display, Sun Moon University)
  • 투고 : 2018.08.02
  • 심사 : 2018.11.02
  • 발행 : 2018.11.30

초록

마이크로칼럼에서는 전자빔을 스캔하기 위해 초소형화된 정전디플렉터를 사용하는 경우가 많다. 주로 두 개의 8중극 디플렉터(double octupole deflector)를 사용하는 경우가 많은데, 이는 스캔 영역을 넓게 하면서도 전자빔이 대물렌즈를 통과할 때에 광축 근처에 위치하도록 함으로써 수차를 작게 유지할 수 있는 장점이 있기 때문이다. 마이크로칼럼은 최종적으로는 멀티 칼럼 형태로 사용하여 전자빔 장비의 throughput을 높이고자 하는 목적으로 연구가 되고 있는데, 칼럼의 수가 많아지게 되면 각 부품에 연결되는 배선의 수도 함께 증가하게 된다. 이에 따라 정전렌즈, 디플렉터 등의 마이크로칼럼 부품 배선을 진공 챔버 밖에 있는 제어장비와 연결하는 과정에서 실질적인 문제에 봉착하게 된다. 이러한 문제를 완화하기 위하여 렌즈 수를 최소화할 수 있도록 대물렌즈를 제거한 마이크로칼럼 구조를 선택하여, 변형된 4중극 및 8중극 디플렉터의 동작을 전산모사 방법으로 연구하였다. 기본적으로 MEMS 공정을 적용하기 용이한 실리콘 디플렉터 구조에서 각 전극의 크기를 동일하게 하지 않고, 서로 다른 크기의 전극을 교대로 배치하도록 디자인하였다. 8중극과 4중극 디플렉터 각각에서 디플렉터 전압을 인가하는 구동전극의 크기에 변화를 주었을 때 스캔 영역과 디플렉터 중심점에서의 전기장의 변화를 조사하여 비교하였다. 스캔 영역은 디플렉터전압에 따라 선형적으로 비례하였다. 스캔영역과 중심점에서의 전기장 세기 모두 8중극 디플렉터에 비해 4중극 디플렉터에서 더 크게 나타났으며, 전극의 크기에 따라 약 1.3 ~ 2.0 배 큰 것으로 조사되었다.

SHGSCZ_2018_v19n11_1_f0001.png 이미지

Fig. 2. The schematic diagram for (a) a conventional Si octupole deflector, (b) a modified octupole deflector, and (c) a quadrupole deflector, considered in this simulation.

SHGSCZ_2018_v19n11_1_f0002.png 이미지

Fig. 3. Electron beam trajectories obtained by applying deflection voltage to 300 electrodes of the modified octupole deflector (a and b) and quadrupole deflector (c). Deflection voltage is 0 V for (a), and 100 V for both (b) and (c). The column operation conditions are described in text.

SHGSCZ_2018_v19n11_1_f0003.png 이미지

Fig. 4. The variations of deflection field depending on the size (radial angle) of deflector electrode for both octupole and quadrupole deflector structures.

SHGSCZ_2018_v19n11_1_f0004.png 이미지

Fig. 5. The variation of (a) electric potential and (b) electric field strength with the radial distance from the center to the deflector electrode. Deflection voltage is 100 V.

SHGSCZ_2018_v19n11_1_f0005.png 이미지

Fig. 6. The variation of electric field strength according to the angle (size) of the deflector electrode.

SHGSCZ_2018_v19n11_1_f0006.png 이미지

Fig. 7. The relation between the electric field strength at deflector center and the scan field.

SHGSCZ_2018_v19n11_1_f0007.png 이미지

Fig. 1. (a) Conventional microcolumn with Einzel lens. (b) The microcolumn structure used in this work. Einzel lens is eliminated and one additional subsidiary electrode (S2s) is added in source lens.

Table 1. The geometrical dimension of each component and the distance between each component of a microcolumn described in Fig. 1(b).

SHGSCZ_2018_v19n11_1_t0001.png 이미지

과제정보

연구 과제 주관 기관 : 한국연구재단

참고문헌

  1. E. Kratschmer, H. S. Kim, M. G. R. Thomson, K. Y. Lee, S. A. Rishton, M. L. Yu, S. Zolgharnain, B. W. Hussey, T. H. P. Chang, "Experimental evaluation of a 20$\times$20 mm footprint microcolumn", Journal of Vacuum Science & Technology B, Vol.14, No.6, pp.3792-3796, 1996. DOI: https://dx.doi.org/10.1116/1.588669 https://doi.org/10.1116/1.588669
  2. T. H. P. Chang, M. G. R. Thomson, E. Kratschmer, H. S. Kim, M. L. Yu, K. Y. Lee, S. A. Rishton, B. W. Hussey, S. Zolgharnain, "Electron-beam microcolumns for lithography and related applications", Journal of Vacuum Science & Technology B, Vol.14, No.6, pp.3774-3781, 1996. DOI: https://dx.doi.org/10.1116/1.588666 https://doi.org/10.1116/1.588666
  3. A. C. Zonnevylle, C. Th. H. Heerkens, C. W. Hagen, P, Kruit, "Multi-electron-beam deflector array", Microelectronic Engineering, Vol.123, pp.140-148, 2014. DOI: https://dx.doi.org/10.1016/j.mee.2014.06.014 https://doi.org/10.1016/j.mee.2014.06.014
  4. Z. Liu, J. Ximen, "A study of miniaturized electrostatic octupole deflectors", Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol.363, No.1-2, pp.225-231, 1995. DOI: https://dx.doi.org/10.1016/0168-9002(95)00156-5
  5. C. Stebler, T. Pfeffer, U. Staufer, N. F. de Rooij, "Microfabricated double layer octupoles for microcolumn applications", Microelectronic Engineering, Vol.46, No.1-4, pp.401-404, 1999. DOI: https://dx.doi.org/10.1016/S0167-9317(99)00118-5 https://doi.org/10.1016/S0167-9317(99)00118-5
  6. H. Kim, C. Han, K. Chun, "The Novel Deflector for Multi Arrayed Microcolumn Using Microelectromechanical System (MEMS) Technology", Japanese Journal of Applied Physics, Vol.42, Part 1, No.6B, pp.4084-4088, 2003. DOI: https://dx.doi.org/10.1143/JJAP.42.4084 https://doi.org/10.1143/JJAP.42.4084
  7. T. S. Oh, D. W. Kim, S. Ahn, H. S. Kim, "Improved design of 5 nm class electron optical microcolumn for manufacturing convenience and its characteristics", Journal of Vacuum Science & Technology A, Vol.31, No.6, Article ID 061601, pp.1-6, 2013. DOI: https://dx.doi.org/10.1116/1.4815953
  8. T. S. Oh, H. S. Kim, S. Ahn, D. W. Kim, "Design of an ultra-miniaturized electron optical microcolumn with sub-5 nm very high resolution", Ultramicroscopy, Vol.136, pp.171-175, 2014. DOI: https://dx.doi.org/10.1016/j.ultramic.2013.10.003 https://doi.org/10.1016/j.ultramic.2013.10.003
  9. H. S. Gross, F. E. Prins, D. P. Kern, "Fabrication and characterisation of an array of miniaturized electrostatic multipoles", Microelectronic Engineering, Vol.41-42, pp.489-492, 1998. DOI: https://dx.doi.org/10.1016/S0167-9317(98)00114-2 https://doi.org/10.1016/S0167-9317(98)00114-2
  10. L. P. Muray, K. Y. Lee, J. P. Spallas, M. Mankos, Y. Hsu, M. R. Gmur, H. S. Gross, C. B. Stebler, T. H. P. Chang, "Experimental evaluation of arrayed microcolumn lithography", Microelectronic Engineering, Vol.53, No.1-4, pp.271-277, 2000. DOI: https://dx.doi.org/10.1016/S0167-9317(00)00313-0 https://doi.org/10.1016/S0167-9317(00)00313-0
  11. T. H. P. Chang, M. Mankos, K. Y. Lee, L. P. Muray, "Multiple electron-beam lithography.", Microelectronic Engineering, Vol.57-58, pp.117-135, 2001. DOI: https://dx.doi.org/10.1016/S0167-9317(01)00528-7 https://doi.org/10.1016/S0167-9317(01)00528-7