Electrical Characteristics of SiC Lateral P-i-N Diodes Fabricated on SiC Semi-Insulating Substrate

  • Kim, Hyoung Woo ;
  • Seok, Ogyun ;
  • Moon, Jeong Hyun ;
  • Bahng, Wook ;
  • Jo, Jungyol
  • Received : 2017.07.11
  • Accepted : 2017.08.04
  • Published : 2018.01.01


Static characteristics of SiC (silicon carbide) lateral p-i-n diodes implemented on semi-insulating substrate without an epitaxial layer are inVestigated. On-axis SiC HPSI (high purity semi-insulating) and VDSI (Vanadium doped semi-insulating) substrates are used to fabricate the lateral p-i-n diode. The space between anode and cathode ($L_{AC}$) is Varied from 5 to $20{\mu}m$ to inVestigate the effect of intrinsic-region length on static characteristics. Maximum breakdown Voltages of HPSI and VDSI are 1117 and 841 V at $L_{AC}=20{\mu}m$, respectiVely. Due to the doped Vanadium ions in VDSI substrate, diffusion length of carriers in the VDSI substrate is less than that of the HPSI substrate. A forward Voltage drop of the diode implemented on VDSI substrate is 12 V at the forward current of $1{\mu}A$, which is higher than 2.5 V of the diode implemented on HPSI substrate.


Silicon carbide;Semi-insulating;Lateral power device;High purity semi-insulating;Vnadium doped semi-insulating


  1. M. Bhatnagar and B. J. Baliga, "Comparison of 6HSiC, 3C-SiC, and Si for power devices," IEEE Trans. ED, vol. 40, no. 3, pp. 645-655, 1993.
  2. R. J. Trew, H. B. Yan, and P. M. Mock, "The potential of diamond and SiC electronic devices for microwave and millimeter-wave power applications," Proc. IEEE, vol. 79, pp. 598-620, 1991.
  3. W. S. Lee, K. W. Chu, C. F. Huang, L. S. Lee, M, J. Tsai, K. Y. Lee and F. Zhao, "Design and Fabrication of 4H-SiC Lateral High-Voltage Devices on a Semi- Insulating Substrate," IEEE Trans. ED, vol. 59, no. 3, pp. 754-760, 2012.
  4. M. Noborio, J. Suda, and T. Kimoto, "4H-SiC lateral double RESURF MOSFETs with low on resistance," IEEE Trans. ED, vol. 54, no. 5, pp. 1216-1223, 2007.
  5. Y. Zhang, K. Sheng, M. Su, J. Zhao, P. Alexandrov, and L. Fursin, "1000 V 9.1 m$\Omega$cm2 normally off 4H-SiC lateral RESURF JFET for power integrated circuit applications," IEEE EDL, vol. 28, no. 5, pp. 404-407, 2008.
  6. C. F. Huang, J. R. Kuo, and C. C. Tsai, "High Voltage (3130V) 4H-SiC Lateral p-n Diodes on a Semi insulating Substrate," IEEE EDL, vol. 29, no. 1, pp. 83-85, 2008.
  7. W. S. Lee, C. W. Lin, M. H. Yang, C. F. Huang, J. Gong and Z. Feng, "Demonstration of 3500-V 4HSiC Lateral MOSFETs," IEEE EDL, vol. 32, no. 3, pp. 360-362, 2011.
  8. Silvaco TCAD, ATLAS, Silvaco International Co. USA
  9. W. C. Mitchel, W. D. Mitchell, G. Landis, H. E. Smith, W. Lee and M. E. Zvanut, "Vanadium donor and acceptor levels in semi-insulating 4H- and 6HSiC," J. Appl. Phys., 101, 013707, 2007.
  10. W. C. Mitchel and W. D. Mitchell, "Compensation mechanism in high purity semi-insulating 4H-SiC," J. Appl. Phys., 101, 053716, 2007.
  11. T. Dalibor, G. Pensl, H. Matsunami, T. Kimoto, W. J. Choyke, A. Schoner, and N. Nordell, "Deep Defect Centers in Silicon Carbide Monitored with Deep Level Transient Spectroscopy," Phys. Stat. Sol. (a), 162, pp. 199-225, 1997.<199::AID-PSSA199>3.0.CO;2-0
  12. J. A. Appels and H. M. J. Vaes, "High voltage thin layer devices (RESURF DEVICES)," IEEE IEDM Tech. Dig., pp. 238-241, 1979.
  13. T. Kimoto, J. A. Cooper, "Fundamentals of silicon carbide technology," Wiley & Sons, Singapore, 2014, chap. 10 and app. C.
  14. A. O. Konstantinov, Q. Wahab, N. Nordell and U. Lindefelt, "Ionization rate and critical fields in 4H silicon carbide," Appl. Phys. Lett., vol. 71, no. 1, pp. 90- 92, 1997.
  15. M. V. S. Chandrashekhar, I. Chowdhury, P. Kaminski, R. Kozlowski, P. B. Klein, and T. Sudarshan, "High Purity Semi-Insulating 4H-SiC Epitaxial Layers by Defect-Competition Epitaxy: Controlling Si Vacancies," Appl. Phys. Express, vol. 5, 025502, 2012.
  16. A. Jain, P. Jumar, S. C. Jain, and V. Kumar, R. Kaur, R. M. Mehra, "Trap filled limit voltage (VTFL) and V2 law in space charge limited currents," J. Appl. Phys., 102, 094505, 2007.


Grant : The Strategic Core Material Technology Development Program

Supported by : Ministry of Trade, Industry & Energy (MI)