DOI QR코드

DOI QR Code

Analysis and Optimization of Permanent Magnet Dimensions in Electrodynamic Suspension Systems

  • Received : 2016.12.25
  • Accepted : 2017.10.20
  • Published : 2018.01.01

Abstract

In this paper, analytical modeling of lift and drag forces in permanent magnet electrodynamic suspension systems (PM EDSs) are presented. After studying the impacts of PM dimensions on the permanent magnetic field and developed lift force, it is indicated that there is an optimum PM length in a specified thickness for a maximum lift force. Therefore, the optimum PM length for achieving maximum lift force is obtained. Afterward, an objective design optimization is proposed to increase the lift force and to decrease the material cost of the system by using Genetic Algorithm. The results confirm that the required values of the lift force can be achieved; while, reducing the system material cost. Finite Element Analysis (FEA) and experimental tests are carried out to evaluate the effectiveness of the PM EDS system model and the proposed optimization method. Finally, a number of design guidelines are extracted.

E1EEFQ_2018_v13n1_307_f0001.png 이미지

Fig. 1. Physical model of electrodynamic suspensionsystem

E1EEFQ_2018_v13n1_307_f0002.png 이미지

Fig. 2. Permanent magnetic field and its fundamentalcomponents. (a) Vertical magnetic field (b)Horizontal magnetic field

E1EEFQ_2018_v13n1_307_f0003.png 이미지

Fig. 3. PM modeling by single current sheet

E1EEFQ_2018_v13n1_307_f0004.png 이미지

Fig. 4. Vertical magnetic field diagram in different PMlengths (a) L=4cm (b) L=40cm (c) L=120cm

E1EEFQ_2018_v13n1_307_f0005.png 이미지

Fig. 5. Horizontal magnetic field diagram in different PMlengths (a) L=4cm (b) L=40cm (c) L=120cm

E1EEFQ_2018_v13n1_307_f0006.png 이미지

Fig. 6. Lift force per unit length with respect to PMdimensions in 100 m/s velocity

E1EEFQ_2018_v13n1_307_f0007.png 이미지

Fig. 7. Variations of lift force to the material cost ratio interms of PM dimensions in 100m/s velocity

E1EEFQ_2018_v13n1_307_f0008.png 이미지

Fig. 8. Mesh generation of PM EDS model

E1EEFQ_2018_v13n1_307_f0009.png 이미지

Fig. 9. Lift force per unit depth in terms of PM length indifferent thicknesses in 100 m/s velocity

E1EEFQ_2018_v13n1_307_f0010.png 이미지

Fig. 10. Drag force per unit depth in terms of PM length indifferent thicknesses

E1EEFQ_2018_v13n1_307_f0011.png 이미지

Fig. 11. Experimental PM EDS system

E1EEFQ_2018_v13n1_307_f0012.png 이미지

Fig. 12. FEM, analytical and experimental results of liftforce per unit depth in 20m/s velocity

E1EEFQ_2018_v13n1_307_f0013.png 이미지

Fig. 13. FEM, analytical and experimental results of dragforce per unit depth in 20m/s velocity

Table 1. Values of fixed variables of suspension system

E1EEFQ_2018_v13n1_307_t0001.png 이미지

Table 2. Design parameters bounds

E1EEFQ_2018_v13n1_307_t0002.png 이미지

Table 3. Genetic algorithm parameters

E1EEFQ_2018_v13n1_307_t0003.png 이미지

Table 4. Parameter of optimized and original EDS system

E1EEFQ_2018_v13n1_307_t0004.png 이미지

References

  1. R. F. Post, and D. D. Ryutov, "The Inductrack: a simpler approach to magnetic levitation," in Applied Superconductivity, IEEE Transactions on, vol. 10, no. 1, pp. 901-904, 2000. https://doi.org/10.1109/77.828377
  2. L. Xianxing, D. Jinyue, D. Yi, S. Kai, and M. Lihong, "Design and Static Performance Analysis of a Novel Axial Hybrid Magnetic Bearing," Magnetics, IEEE Transactions on, vol. 50, pp. 1-4, 2014.
  3. F. Impinna, J. G. Detoni, N. Amati, and A. Tonoli, "Passive Magnetic Levitation of Rotors on Axial Electrodynamic Bearings," Magnetics, IEEE Transactions on, vol. 49, pp. 599-608, 2013. https://doi.org/10.1109/TMAG.2012.2209124
  4. F. Safaei, A. A. Suratgar, A. Afshar, and M. Mirsalim, "Characteristics Optimization of the Maglev Train Hybrid Suspension System Using Genetic Algorithm," Energy Conversion, IEEE Transactions on, vol. PP, pp. 1-8, 2015.
  5. W. Kang, W. Dong, L. Heyun, S. Yang, Z. Xianbiao, and Y. Hui, "Analytical Modeling of Permanent Magnet Biased Axial Magnetic Bearing With Multiple Air Gaps," Magnetics, IEEE Transactions on, vol. 50, pp. 1-4, 2014.
  6. L. Xu and H. Bangcheng, "The Multiobjective Optimal Design of a Two-Degree-of-Freedom Hybrid Magnetic Bearing," Magnetics, IEEE Transactions on, vol. 50, pp. 1-14, 2014.
  7. B. Duck Kweon, C. Hungje, and L. Jongmin, "Characteristic Analysis of HTS Levitation Force With Various Conditions of Ground Conductors," Applied Superconductivity, IEEE Transactions on, vol. 18, pp. 803-807, 2008. https://doi.org/10.1109/TASC.2008.920684
  8. L. Jongmin, B. Duck Kweon, K. Hyoungku, A. Min Cheol, L. Young-Shin, and K. Tae-Kuk, "Analysis on Ground Conductor Shape and Size Effect to Levitation Force in Static Type EDS Simulator," Applied Superconductivity, IEEE Transactions on, vol. 20, pp. 896-899, 2010. https://doi.org/10.1109/TASC.2010.2041542
  9. H. Rezaei and S. Vaez-Zadeh, "Modelling and analysis of permanent magnet electrodynamic suspension systems," Progress In Electromagnetics Research M, Vol. 36, 77-84, 2014. https://doi.org/10.2528/PIERM14032407
  10. R. J. Hill, "Teaching electrodynamic levitation theory," Education, IEEE Transactions on, vol. 33, pp. 346- 354, 1990. https://doi.org/10.1109/13.61088
  11. R. F. Post and D. D. Ryutov, "The Inductrack: a simpler approach to magnetic levitation," Applied Superconductivity, IEEE Transactions on, vol. 10, pp. 901-904, 2000. https://doi.org/10.1109/77.828377
  12. Business Insider. Markets Now. Available Online: http://markets.businessinsider.com/commodities/aluminum-price.
  13. European Commission. Materials Information System. Available Online: https://setis.ec.europa.eu/mis/material/neodymium.