DOI QR코드

DOI QR Code

Large Scale Rainfall-runoff Analysis Using SWAT Model: Case Study: Mekong River Basin

SWAT 모형을 이용한 대유역 강우-유출해석: 메콩강 유역을 중심으로

  • Lee, Dae Eop (Department of Construction and Disaster Prevention Engineering, Kyungpook National University) ;
  • Yu, Wan Sik (International Water Resources Research Institute, Chungnam National University) ;
  • Lee, Gi Ha (Department of Construction and Disaster Prevention Engineering, Kyungpook National University)
  • Received : 2017.10.19
  • Accepted : 2017.11.29
  • Published : 2018.01.31

Abstract

This study implemented the rainfall-runoff analysis of the Mekong River basin using the SWAT (Soil and Water Assessment Tool). The runoff analysis was simulated for 2000~2007, and 11 parameters were calibrated using the SUFI-2 (Sequential Uncertainty Fitting-version 2) algorithm of SWAT-CUP (Calibration and Uncertainty Program). As a result of analyzing optimal parameters and sensitivity analysis for 6 cases, the parameter ALPHA_BF was found to be the most sensitive. The reproducibility of the rainfall-runoff results decreased with increasing number of stations used for parameter calibration. The rainfall-runoff simulation results of Case 6 showed that the RMSE of Nong Khai and Kratie stations were 0.97 and 0.9, respectively, and the runoff patterns were relatively accurately simulated. The runoff patterns of Mukdahan and Khong Chaim stations were underestimated during the flood season from 2004 to 2005 but it was acceptable in terms of the overall runoff pattern. These results suggest that the combination of SWAT and SWAT-CUP models is applicable to very large watersheds such as the Mekong for rainfall-runoff simulation, but further studies are needed to reduce the range of modeling uncertainty.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. Abbaspour, K. C., 2011. SWAT-CUP4: SWAT calibration and uncertainty programs - a user manual. Swiss Federal Institute of Aquatic Science and Technology, Eawag.
  2. Abbaspour, K. C., J. Yang, I. Maximov, R. Siber, K. Bogner, J. Mieleitner, J. Zobrist, and R. Srinivasan, 2007. Spatially distributed modelling of hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. Journal of Hydrology 333: 413-430. doi:10.1016/j.jhydrol.2006.09.014.
  3. Abbott, M., J. Bathurst, J. Cunge, P. O'Connell, and J. Rasmussen, 1986. An introduction to the european hydrological systemsysteme hydrologique europeen, "SHE", 1: History and philosophy of a physically-based, distributed modelling system. Journal of Hydrology 87(1-2): 45-59. doi:10.1016/0022-1694(86)90115-0.
  4. Choi, H. S., 2013. Parameter estimation of SWAT model using SWAT-CUP in Seom-river experimental watershed. Journal of the Korean Society of Civil Engineers 33(2): 529-536. doi:10.12652/Ksce.2013.33.2.529. (in Korean).
  5. Choi, Y. S., K. T. Kim, and M. P. Shim, 2010. Discharge estimation at ungauged catchment using distributed rainfallrunoff model. Journal of Korea Water Resources Association 43(4): 353-365. doi:10.3741/JKWRA.2010.43.4.353 (in Korean).
  6. Downer, C. W. and F. L. Ogden, 2002. GSSHA user's manual: gridded surface subsurface hydrologic analysis, version 1.43 for WMS 6.1. Engineer Research and Development Center Technical Report, Vicksburg, MS.
  7. Joh, H. K., J. Y. Park, C. H. Jang, and S. J. Kim, 2012. Comparing prediction uncertainty analysis techniques of SWAT simulated stream flow applied to Chungju dam watershed. Journal of Korea Water Resources Association 45(9): 861-874. doi: 10.3741/JKWRA.2012.45.9.861 (in Korean).
  8. Julien P. Y. and B. Sachafian, 1991. CASC2D user's manual: a two-dimensional watershed rainfall-runoff model. Civil Engr. Report. CER90-91PYJBS-12. Colorado State University.
  9. Kim, J. H., 2013. Transboundary water issue : the case of hydropower in the Mekong river basin. Magazine of Korea Water Resources Association: Water for future 46(6): 28-33 (in Korean).
  10. Lee, E. H. and D. I. Seo, 2011. Flow calibration and validation of Daechung Lake watershed, Korea using SWAT-CUP. Journal of Korea Water Resources Association 44(9): 711-720. doi: 10.3741/JKWRA.2011.44.9.711 (in Korean).
  11. Lee, W. H., J. H. Lee, J. H. Park, and H. S. Choi, 2016. The relationship between parameters of the SWAT model and the geomorphological characteristics of a watershed. Journal of the Korean Society of Ecology and Infrastructure Engineering 3(1): 35-45. doi:10.17820/eri.2016.3.1.035 (in Korean).
  12. MRC, Mekong river commission for sustainable development: about the Mekong, water at work. http://www.mrcMekong.org/about_Mekong/water_work.htm. 2009.
  13. Ryu, J. C., H. W. Kang, J. W. Choi, D. S. Kong, D. H. Gum, C. H. Jang, and K. J. Lim, 2012. Application of SWAT-CUP for streamflow auto-calibration at Soyang-gang dam watershed. Journal of Korean Society on Water Environment 28: 347-358 (in Korean).
  14. Schuol, J., K. C. Abbaspour, R. Srinivasan, and H. Yang, 2008. Estimation of freshwater availability in the west african subcontinent using the SWAT hydrologic model. Journal of Hydrology 352: 30-49. doi:10.1016/j.jhydrol.2007.12.025.
  15. Setegn, S. G., R. Srinivasan, A. M. Melesse, and B. Dargahi, 2010. SWAT model application and prediction uncertainty analysis in the lake Tana basin, Ethiopia. Hydrological Processes 24: 357-367. doi:10.1002/hyp.7457.
  16. Shrestha, B., M. S. Babel, S. Maskey, A. Van Griensven, S. Uhlenbrook, A. Green, and I. Akkharath, 2013. Impact of climate change on sediment yield in the Mekong river basin: a case study of the Nam ou basin, Lao PDR. Hydrology and Earth System Sciences 17(1): 1-20 doi:10.5194/hess-17-1-2013.
  17. Viet, T., The lower Mekong dams factsheet text. International Rivers. https://www.internationalrivers.org. Accessed 28 March. 2013
  18. Vieux, B. and J. Vieux, 2002. VfloTM : A real time distributed hydrologic model. Proceedings of the Second Federal Interagency Hydrologic Modeling Conference, Las Vegas, Nevada.
  19. Vilaysane, B., K. Takara, P. Luo, I. Akkharath, and W. Duan, 2015. Hydrological stream flow modelling for calibration and uncertainty analysis using SWAT model in the Xedone river basin, Lao PDR. Procedia Environmental Sciences 28: 380-390. doi:10.1016/j.proenv.2015.07.047.
  20. Wang, W., H. Lu, D. Yang, K. Sothea, J. Yang, B. Gao, X. Peng, and Z. Pang, 2016. Modelling hydrologic processes in the Mekong river basin using a distributed model driven by satellite precipitation and rain gauge observations. PLOS ONE 11(3). doi:10.1371/journal.pone.0152229.
  21. Yang, J., P. Reichert, K. C. Abbaspour, J. Xia, and H. Yang, 2008. Comparing uncertainty analysis techniques for a SWAT application to the Chaohe Basin in China. Journal of Hydrology 358: 1-23. https://doi.org/10.1016/j.jhydrol.2008.05.012
  22. Yatagai, A., K. Kamiguchi, O. Arakawa, A. Hamada, N. Yasutomi, and A. Kitoh, 2012. APHRODITE: Constructing a long-term daily gridded precipitation dataset for asia based on a dense network of rain gauges. Bulletin of the American Meteorological Society 93(9): 1401-1415 doi:10.1175/BAMSD-11-00122.1.