DOI QR코드

DOI QR Code

Vulnerability assessment index at process-level for the identification of adaptive strategies in wastewater treatment plants under climate change

  • Kim, Dongwoo (Department of Environmental Science and Engineering, Kyung Hee University) ;
  • Jacome, Gabriel (Department of Environmental Science and Engineering, Kyung Hee University) ;
  • Lee, SeungChul (Department of Environmental Science and Engineering, Kyung Hee University) ;
  • Moya, Wladimir (Department of Environmental Science and Engineering, Kyung Hee University) ;
  • Nam, KiJeon (Department of Environmental Science and Engineering, Kyung Hee University) ;
  • Yoo, Changkyoo (Department of Environmental Science and Engineering, Kyung Hee University)
  • Received : 2017.03.16
  • Accepted : 2017.08.09
  • Published : 2017.12.01

Abstract

Many studies have been conducted on climate change vulnerability assessments to develop adaptive strategies for climate change on a national or global scale. The development of an assessment tool for climate change on a process-level is necessary for evaluating vulnerability and to suggest an effective adaptive strategy in wastewater treatment plants (WWTP). Therefore, we proposed a vulnerability assessment index at the process-level in a WWTP to evaluate adaptive strategies for climate change in this study. The suggested process-level vulnerability assessment index is based on three performance WWTP indices: the effluent quality index (EQI), global warming potential (GWP), and operational cost index (OCI). Four different advanced WWTP processes were evaluated using the suggested vulnerability assessment index based on the A2 scenario, which is one of the carbon emission scenarios making predictions out to 2100 developed by the intergovernmental panel on climate change (IPCC). The adaptive strategies were evaluated at four conventional treatment processes to see the improvement of vulnerability of their processes, where the changes of their vulnerabilities are compared together. Suggested adaptive strategies in case studies showed that the process-level vulnerabilities were significantly decreased in the anaerobic/anoxic/aerobic ($A_2O$) and Virginia initiative project (VIP) processes, especially during the flood and winter seasons. Therefore, it is expected that the proposed vulnerability assessment index can be useful as a decision-supporting tool for selecting the appropriate adaptive strategy for each process.

Acknowledgement

Supported by : Doosan YonKang Foundation, National Research Foundation of Korea (NRF)

References

  1. S. J. Myung, D.G. Lee, S.H. Sin, G.W. Jo and H. S. Lee, Assessing vulnerability to climate change of the physical infrastructure in Korea and developing adaptation strategies, Korea Environment Institute, Republic of Korea (2009).
  2. M. M.Q. Mirza, Reg. Environ. Change, 11, 95 (2011). https://doi.org/10.1007/s10113-010-0184-7
  3. O. Thorne and R. Fenner, Water Environ. J., 25, 74 (2011). https://doi.org/10.1111/j.1747-6593.2009.00194.x
  4. WHO, Guidance on water supply and sanitation in extreme weather events, L. Sinisi and R. Aertgeerts Eds., World Health Organization, Copenhagen (2011).
  5. IPCC, Climate Change 2007: Mitigation. Contribution of working group III to the fourth assessment report of the Intergovernmental Panel on Climate Change, B. Metz, O.R. Davidson, P.R. Bosch, R. Dave and L.A. Meyer Eds., Cambridge University Press, Cambridge (2007).
  6. IPCC, Climate Change 2001: Mitigation. Contribution of working group III to the third assessment report of the Intergovernmental Panel on Climate Change, B. Metz, O. Davidson, R. Swart and J. Pan Eds., Cambridge University Press, Cambridge (2001).
  7. N. Brooks, W. N. Adger and P. M. Kelly, Glob. Environ. Change, 15, 151 (2005). https://doi.org/10.1016/j.gloenvcha.2004.12.006
  8. G. Yoo, J. H. Hwang and C. Choi, Ocean Coastal Manage., 54, 524 (2011). https://doi.org/10.1016/j.ocecoaman.2011.04.001
  9. A. Barbosa, J. Fernandes and L. David, Water Res., 46, 6787 (2012). https://doi.org/10.1016/j.watres.2012.05.029
  10. B. Arheimer, J. Andreasson, S. Fogelberg, H. Johnson, C.B. Pers and K. Persson, Ambio, 34, 559 (2005). https://doi.org/10.1579/0044-7447-34.7.559
  11. C. J. Vorosmarty, P. Green, J. Salisbury and R.B. Lammers, Science, 289, 284 (2000). https://doi.org/10.1126/science.289.5477.284
  12. A. Hurst, M. Edwards, M. Chipps, B. Jefferson and S. Parsons, Sci. Total Environ., 321, 219 (2004). https://doi.org/10.1016/j.scitotenv.2003.08.016
  13. R. Stent, Freshwater Biol., 11, 567 (1981). https://doi.org/10.1111/j.1365-2427.1981.tb01287.x
  14. B. Plosz, H. Liltved and H. Ratnaweera, Water Sci. Technol., 60, 533 (2009). https://doi.org/10.2166/wst.2009.386
  15. J. Langeveld, R. Schilperoort and S. Weijers, J. Hydrol., 476, 112 (2013). https://doi.org/10.1016/j.jhydrol.2012.10.021
  16. R. Pielke, Climate vulnerability: Understanding and addressing threats to essential resources, Academic Press (2013).
  17. G. Yoo and J. Kim, Development of a methodology assessing rice production vulnerabilities to climate change: Technical report, D. Matte Ed., Korea Environment Institute, Republic of Korea (2007).
  18. UNDP, Human development report 2006. Beyond scarcity: Power, poverty and the global water crisis, UNDP Human Development Reports (2006).
  19. J. Alex, L. Benedetti, J. Copp, K.V. Gernaey, U. Jeppsson, I. Nopens, M. N. Pons, J. P. Steyer and P. Vanrolleghem, Benchmark simulation model no. 1 (BSM1), IWA Publishing, London (2009).
  20. K.V. Gernaey and S.B. Jorgensen, Control Eng. Pract., 12, 357 (2004). https://doi.org/10.1016/S0967-0661(03)00080-7
  21. J. Guerrero, X. Flores, A. Guisasola, J.A. Baeza and K.V. Gernaey, Bioresour. Technol., 136, 680 (2013). https://doi.org/10.1016/j.biortech.2013.03.021
  22. U. Jeppsson, M. Pons, I. Nopens, J. Alex, J. Copp, K. Gernaey, C. Rosen, J. Steyer and P. Vanrolleghem, Water Sci. Technol., 56, 67 (2007).
  23. IPCC, Climate Change 2007: The physical science basis. contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change, S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H. L. Miller Eds., Cambridge University Press, Cambridge (2007).
  24. IPCC, 2006 IPCC Guidelines for national greenhouse gas inventories - A primer, prepared by the National Greenhouse Gas Inventories Programme, H.S. Eggleston, K. Miwa, N. Srivastava and K. Tanabe Eds., IGES, Japan (2008).
  25. F. Jeffrey, H. David, Y. Zhiguo and L. Paul, Water Res., 44, 831 (2010). https://doi.org/10.1016/j.watres.2009.10.033
  26. O. Ashrafi, Estimation of greenhouse gas emissions in wastewater treatment plant of pulp & paper industry, PhD Thesis, Concordia University (2012).
  27. G. Yoo, A.R. Kim and S. Hadi, Ocean Coastal Manage., 102, 169 (2014). https://doi.org/10.1016/j.ocecoaman.2014.09.018
  28. M. Henze, W. Gujer, T. Mino and M. Van Loosedrecht, Activated sludge models ASM1, ASM2, ASM2d and ASM3, IWA Scientific and Technical report No. 9, UK (2006).
  29. L. Yerushalmi, F. Haghighat and M. Shahabadi, World Acad. Sci. Eng. Technol., 54, 618 (2009).
  30. P.A. Vanrolleghem and S. Gillot, Water Sci. Technol., 45, 117 (2002).
  31. L. Snip, Quantifying the greenhouse gas emissions of wastewater treatment plants, MSc Thesis. Wageningen Univ, Netherlands (2009).
  32. M. H. Kim and C. K. Yoo, Korean Chem. Eng. Res., 46, 610 (2008).
  33. A.K. Tolkou and A. I. Zouboulis, Desalin. Water Treat., 57, 2344 (2016). https://doi.org/10.1080/19443994.2015.1049403
  34. J.A. Camargo and A. Alonso, Environm. Int., 32, 831 (2006).
  35. J.A. O'Neill, Hydrology Days 2010, 79 (2010).
  36. L. Guo, C. Martin, I. Nopens and P.A. Vanrolleghem, IWA Nutrient Removal and Recovery 2012, 23 (2012).
  37. C. Sweetapple, G. Fu and D. Butler, Water Res., 55, 52 (2014). https://doi.org/10.1016/j.watres.2014.02.018
  38. P. S.N. Garikiparthy, S. C. Lee, H. Liu, S. S. Kolluri, I. J. Esfahani and C.K. Yoo, Korean J. Chem. Eng., 33, 14 (2016). https://doi.org/10.1007/s11814-015-0132-9
  39. S.H. Pyo, M. J. Kim, S.C. Lee, H. Shi, J.T. Kim and C.K. Yoo, 7th Intl. Congress on Env. Modelling and Software, U.S.A. (2014).
  40. J. Song, Y. Kim and N. Yoo, Creat. Educ., 3, 17 (2012). https://doi.org/10.4236/ce.2012.37B004
  41. M. Kim, D. Kim, I. J. Esfahani, S. Lee, M. Kim and C. Yoo, Korean J. Chem. Eng., 34, 6 (2017). https://doi.org/10.1007/s11814-016-0276-2
  42. M. Pirsaheb, M. Mohamadi, A. M. Mansouri, A. A. L. Zinatizadeh, S. Sumathi and K. Sharafi, Korean J. Chem. Eng., 32, 1340 (2015). https://doi.org/10.1007/s11814-014-0365-z