DOI QR코드

DOI QR Code

Removal of polycyclic aromatic hydrocarbons from contaminated soil in a two-phase partitioning bioreactor

  • Lee, Jae-Young (Transportation Environmental Research Team, Korea Railroad Research Institute (KRRI)) ;
  • Kwon, Tae-Soon (Railroad Safety Research Division, Korea Railroad Research Institute (KRRI)) ;
  • Lee, Young-Chul (Department of BioNano Technology, Gachon University)
  • 투고 : 2017.03.28
  • 심사 : 2017.05.21
  • 발행 : 2017.09.01

초록

A two-phase partitioning bioreactor was employed to remediate soil contaminated by a mixture of polycyclic aromatic hydrocarbons consisting of phenanthrene, anthracene, and pyrene. In this study, the transfer of three PAHs into the water-immiscible liquid phase (silicone oil or paraffine oil) from the soil was investigated during the first 24 h. And then, phenanthrene and anthracene were degraded by approximately 90% and 80%, respectively, compared with initial concentration in soil, but pyrene was not degraded during seven days of operation period. In addition, the feasibility of a soil slurry sequencing batch reactor system in terms of continuously operating a two-phase partitioning bioreactor was investigated. Phenanthrene and anthracene were degraded semi-continuously and repeatedly during two operating cycles. Pyrene was still not degraded and was just transferred into the water-immiscible liquid phase considering its solubility.

과제정보

연구 과제 주관 기관 : Korea Railroad Research Institute (KRRI), Korea Environmental Industry & Technology Institute (KEITI)

참고문헌

  1. S. Gan, E.V. Lau and H.K. Ng, J. Hazard. Mater., 172, 532 (2009). https://doi.org/10.1016/j.jhazmat.2009.07.118
  2. N. Nasirpoour, S.M. Mousavi and S. A. Shojaosadati, Korean J. Chem. Eng., 32(5), 874 (2015). https://doi.org/10.1007/s11814-014-0307-9
  3. M. Gatheru Waigi, F. Kang, C. Goikavi, W. Ling and Y. Gao, Int. Biodeterior. Biodegradation, 104, 333 (2015). https://doi.org/10.1016/j.ibiod.2015.06.008
  4. J.-C. Yoo, C. Lee, J.-S. Lee and K. Baek, J. Environ. Manage., 186, 314 (2017). https://doi.org/10.1016/j.jenvman.2016.03.016
  5. C. Roh, C. Kang and J.R. Lloyd, Korean J. Chem. Eng., 32(9), 1720 (2015). https://doi.org/10.1007/s11814-015-0128-5
  6. N. Gonzalez, R. Simarro, M. C. Molona, L. F. Bautista, L. Delgado and J.A. Villa, Bioresour. Technol., 102, 9438 (2011). https://doi.org/10.1016/j.biortech.2011.07.066
  7. D. Zhang, L. Zhu and F. Li, Bioresour. Technol., 142, 454 (2013). https://doi.org/10.1016/j.biortech.2013.05.077
  8. H. Ni, W. Zhou and L. Zhu, J. Environ. Sci., 26, 1071 (2014). https://doi.org/10.1016/S1001-0742(13)60535-5
  9. A. J. Daugulis, Trends in Biotechol., 19(11), 457 (2001). https://doi.org/10.1016/S0167-7799(01)01789-9
  10. E. Deziel, Y. Comeau and R. Villemur, Biodegradation, 10, 219 (1999). https://doi.org/10.1023/A:1008311430525
  11. R. Villemur, E. Deziel, A. Benachenhou, J. Marcoux, E. Gauthier, J. Marcoux, E. Gauthier, F. Lepine, R. Beaudet and Y. Comeau, Biotechnol. Prog., 16(6), 966 (2000). https://doi.org/10.1021/bp000118j
  12. B. Guieysse, M. d.D.T. G. Girne and B. Mattiasson, Appl. Microbiol. Biotechnol., 56, 796 (2001). https://doi.org/10.1007/s002530100706
  13. R.A. Efroymson and M. Alexander, Environ. Sci. Technol., 28, 1172 (1994). https://doi.org/10.1021/es00055a031
  14. T.B. Janikowski, D. Velicogna, M. Punt and A. J. Daugulis, Appl. Microbiol. Biotechnol., 59, 368 (2002). https://doi.org/10.1007/s00253-002-1011-y
  15. R. Munoz, B. Guieysse and B. Mattiasson, Appl. Microbiol. Biotechnol., 61, 261 (2003). https://doi.org/10.1007/s00253-003-1231-9
  16. M. Lu, Z. Zhang, S. Sun, Q. Wang and W. Zhong, Chemosphere, 77, 161 (2009). https://doi.org/10.1016/j.chemosphere.2009.08.001
  17. C. Wang, F. Wang, T. Wang, Y. Bian, X. Yang and X. Jing, J. Hazard. Mater., 176, 41 (2010). https://doi.org/10.1016/j.jhazmat.2009.10.123
  18. A. Arca-Ramos, G. Eined, M.T. Moreira, G. Feijoo and J.M. Lema, Chem. Eng. J., 240, 281 (2014). https://doi.org/10.1016/j.cej.2013.11.076
  19. J.-Y. Lee and T.-S. Kwon, J. Ind. Eng. Chem., 47, 46 (2017). https://doi.org/10.1016/j.jiec.2016.11.031
  20. R. Munoz, S. Villaverde, B. Guieysse and S. Revah, Biotechnol. Adv., 25, 410 (2007). https://doi.org/10.1016/j.biotechadv.2007.03.005
  21. R. Munoz, A. J. Daugulis, M. Hernandez and G. Quijano, Biotechnol. Adv., 20, 1707 (2012).
  22. E.E. Poleo and A. J. Dauglis, J. Hazard. Mater., 254-255, 206 (2013). https://doi.org/10.1016/j.jhazmat.2013.03.029
  23. D.P. Cassidy, S. Efendiev and D. M. White, Water Res., 34(18), 4333 (2000). https://doi.org/10.1016/S0043-1354(00)00211-6
  24. D. P. Cassidy and A. J. Hudak, J. Hazard. Mater., B84, 253 (2001).
  25. A. Chiavola, R. Baciocchi and R. Gavasci, J. Hazard. Mater., 184, 97 (2010). https://doi.org/10.1016/j.jhazmat.2010.08.010
  26. Y. Ahn, B.-G. Jung, N.-C. Sung and Y.-O. Lee, J. Life Sci., 19(5), 659 (2009). https://doi.org/10.5352/JLS.2009.19.5.659
  27. J.-Y. Lee, H.-J. Cho, K. Baek and J.-W. Yang, J. Environ. Sci. Heal. A, 40, 509 (2005). https://doi.org/10.1081/ESE-200046553
  28. J.-W Yang, Y.-J. Lee, J.-Y. Park, S.-J. Kim and J.-Y. Lee, Eng. Geol., 77, 243 (2005). https://doi.org/10.1016/j.enggeo.2004.07.015
  29. J.-Y. Park, H.-H, Lee, S.-J. Kim, Y.-J. Lee and J.-W. Yang, J. Hazard. Mater., 140, 230 (2007). https://doi.org/10.1016/j.jhazmat.2006.06.140