DOI QR코드

DOI QR Code

Influence of feeding mode on cooling crystallization of L-lysine in Couette-Taylor crystallizer

  • Nguyen, Anh-Tuan (Department of Chemical Engineering, ILRI, Kyung Hee University) ;
  • Kim, Woo-Sik (Department of Chemical Engineering, ILRI, Kyung Hee University)
  • Received : 2016.11.25
  • Accepted : 2017.03.16
  • Published : 2017.07.01

Abstract

A continuous Couette-Taylor (CT) crystallizer was used to apply a multiple feeding mode strategy to enhance the crystal size and size distribution of L-lysine crystals in cooling crystallization. With a 5-min mean residence time, feed concentration of 900 g/l, and rotation speed of 700 rpm, the multiple feeding mode strategy Run-III (D21) produced a large crystal size of $139{\mu}m$ and coefficient of variation (CV) for the size distribution of 0.39, both of which were significantly enhanced when compared with the conventional feeding mode Run-I (D1) that produced a crystal size of $82{\mu}m$ and CV for the size distribution of 0.53. Essentially, the crystal size was enhanced around 70%, while the size distribution was improved around 28%. Finally, the impact of the multiple feeding mode strategy on the crystal size and size distribution is explained in terms of effective control of the supersaturation.

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. A. S. Myerson, Handbook of Industrial Crystallization, Butterworth-Heinemann, Oxford (1993).
  2. K. Shimiza, T. Nomura and K. Takahashi, J. Cryst. Growth, 191, 178 (1998). https://doi.org/10.1016/S0022-0248(98)00021-9
  3. V. Liotta and V. Sabesan, Org. Proc. Res. Dev., 8, 488 (2004). https://doi.org/10.1021/op049959n
  4. N. Kubota, N. Doki, M. Yokota and D. Jagadesh, J. Chem. Eng. Japan, 35, 1063 (2002). https://doi.org/10.1252/jcej.35.1063
  5. R. Davey and J. Garside, From Molecules to Crystallizers, Oxford University Press, New York (2000).
  6. G. Shan, K. Igarashi, H. Noda and H. Ooshima, Chem. Eng. J., 85, 161 (2002). https://doi.org/10.1016/S1385-8947(01)00153-X
  7. H. Takiyama, K. Shindo and M. Matsuoka, J. Chem. Eng. Japan, 35, 1072 (2002). https://doi.org/10.1252/jcej.35.1072
  8. D.Y. Kim and D.R. Yang, Korean J. Chem. Eng., 32, 1222 (2015). https://doi.org/10.1007/s11814-014-0320-z
  9. A.-T. Nguyen, J. M. Kim, S. M. Chang and W.-S. Kim, Ind. Eng. Chem. Res., 49, 4865 (2010). https://doi.org/10.1021/ie901932t
  10. S. Lee, A. Choi, W.-S. Kim and A. S. Myerson, Cryt. Growth Des., 11, 5019 (2011). https://doi.org/10.1021/cg200925v
  11. J.M. Kim, S. M. Chang, J. H. Chang and W.-S. Kim, Colloids Surface A: Phys. Eng. Asp., 384, 31 (2011). https://doi.org/10.1016/j.colsurfa.2011.03.016
  12. S. Lee, C. H. Lee and W.-S. Kim, J. Cryst. Growth, 373, 32 (2012).
  13. A.-T. Nguyen, T. Yu and W.-S. Kim, J. Crys. Growth, DOI:10.1016/ j.jcrysgro.2016.10.020 (2017).
  14. A.-T. Nguyen, Y. L. Joo, S. M. Chang and W.-S. Kim, Cryt. Growth Des., 12, 2780 (2012). https://doi.org/10.1021/cg201361e
  15. W.L. McCabe, J.C. Smith and P. Harriott, Unit Operations of Chemical Engineering 6th, McGraw Hill, Boston (2001).