NH3-SCR performance and characterization over magnetic iron-magnesium mixed oxide catalysts

  • Xu, Liting (School of Energy and Power Engineering, Shandong University) ;
  • Niu, Shengli (School of Energy and Power Engineering, Shandong University) ;
  • Lu, Chunmei (School of Energy and Power Engineering, Shandong University) ;
  • Wang, Dong (State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University) ;
  • Zhang, Kang (School of Energy and Power Engineering, Shandong University) ;
  • Li, Jing (School of Chemistry and Chemical Engineering, Shandong University)
  • Received : 2016.07.14
  • Accepted : 2017.02.17
  • Published : 2017.05.01


A series of magnetic iron-magnesium mixed oxide catalysts ($Fe_{1-x}Mg_xO_z$) were synthesized via a novel co-precipitation method with microwave thermal treatment, and their activity in $NH_3$-SCR was tested on a quartz fixedbed reactor. Physical and chemical properties of the catalysts were characterized by X-ray diffraction (XRD), $N_2$-adsorption-desorption, scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS). $Fe_{0.8}Mg_{0.2}O_z$ with excellent $N_2$ selectivity and resistance to $SO_2$ and $H_2O$ was validated as the proper SCR catalyst, with the maximum $NO_x$ conversion of 99.1% fulfilled at $325^{\circ}C$. Activity was strongly influenced by the ${\gamma}-Fe_2O_3$ crystalline phase, and magnesium existed in an amorphous phase and interacted with iron oxide intensively to form solid solution in favor of SCR. For $Fe_{0.8}Mg_{0.2}O_z$ catalyst, optimum pore diameter distribution, appropriate surface area, pore volume and abundant lattice oxygen on the surface could be guaranteed, which is good for the diffusion process and enhances the activity.


Supported by : National Natural Science Foundation of China, Shandong University


  1. J. Yang, H.T. Ma, Y. Yamamoto, J. Yu, G.W. Xu, Z. G. Zhang and Y. Suzuki, Chem. Eng. J., 230, 513 (2013).
  2. Y. B. Jo, J. S. Cha, J.H. Ko, M. C. Shin, S. H. Park, J. K. Jeon, S. S. Kim and Y.K. Park, KJCE, 28, 106 (2011).
  3. Y. G. Chen, Z. Wang and Z. C. Guo, Chin J. Process Eng., 7, 632 (2007).
  4. P.W. Seo, S. S. Kim and S. C. Hong, KJCE, 27, 1220 (2010).
  5. F.Y. Gao, X. L. Tang, H. H. Yi, S. Z. Zhao, T.T. Zhang, D. Li and D. Ma, Bull. Sci. Technol., 26, 2560 (2014).
  6. L. Y. Xiong, Q. Zhong, Q. Q. Chen and S. L. Zhang, KJCH, 30, 836 (2013).
  7. X. Gao, X. J. Lu and M. H. Hu, J. Jianghan Univ., 02, 12 (2014).
  8. F. Cao, S. Su, J. Xiang, P.Y. Wang, S. Hu, L. S. Sun and A.C. Zhang, Fuel, 139, 232 (2015).
  9. M. Casanova, J. Llorca, A. Sagar, K. Schermanz and A. Trovarelli, Catal. Today, 241, 159 (2015).
  10. R. Foo, T. Vazhnova, D.B. Luckyanov, P. Millington, J. collier, R. Rajaram and S. Golunski, Appl. Catal. B-Environ., 162, 174 (2015).
  11. G. H. Yao, K.T. Gui and F. Wang, Chem. Eng. Technol., 33, 1093 (2010).
  12. D. Wang, J. K. Wu, S. L. Niu, C. M. Lu, L.T. Xu, H.W. Yu and J. Li, J. Fuel Chem. Technol., 43, 876 (2015).
  13. X. L. Zhang, D. Wang, J. S. Peng, C. M. Lu and L.T. Xu, J. Fuel Chem. Technol., 43, 243 (2015).
  14. Y. Gao, X. M. Hu, P. J. Liu, Y. Li, Y. Zhang, Y. Liu and Y.B. Guo, Chin J. Environ. Eng., 2, 806 (2008).
  15. R.Y. Lai, X. L. Tang, H. H. Yi, K. Li, P. Wang and X. Sun, Mod. Chem. Ind., 34, 76 (2014).
  16. S. L. Zhang, H.Y. Li and Q. Zhong, Appl. Catal. A-Gen., 435-436, 156 (2012).
  17. Z. Cao, Y. Huang, L. L. Peng and J. G Li, J. Fuel Chem. Technol., 40, 456 (2012).
  18. J.S. Chen, X.S. Shang, J.P. Zhao, F.W. Zhang, Y. Xu and J.R. Li, Electric. Power., 43, 64 (2010).
  19. S. Wang, G. H. Yao and K.T. Gui, Prog. Chin. Soc. Electrial Eng., 29, 47 (2009).
  20. L. Chen, J. H. Li and M. F. Ge, Environ. Sci. Technol., 44, 9590 (2011).
  21. L. Chen, J. H. Li, M. F. Ge and R. H. Zhu, Catal. Today, 153, 77 (2010).
  22. G. S. Qi and R.T. Yang, J. Catal., 217, 434 (2003).