DOI QR코드

DOI QR Code

Novel multi-scale diffusion model for catalytic methane combustion

  • Huang, Kai (School of Chemistry and Chemical Engineering, Southeast University) ;
  • Wang, Lianguang (School of Chemistry and Chemical Engineering, Southeast University) ;
  • Xu, Yang (School of Chemistry and Chemical Engineering, Southeast University) ;
  • Wu, Dongfang (School of Chemistry and Chemical Engineering, Southeast University)
  • Received : 2016.12.23
  • Accepted : 2017.02.09
  • Published : 2017.05.01

Abstract

A multi-scale model of methane catalytic combustion was built by a series of balance equations and diffusion equations, and these equations were solved through the computational fluid dynamics (CFD) software. The difference between this work and previous model is the diffusion process in catalyst coating was considered. By analyzing the methane conversion, temperature distribution and mass fraction contours of every component, the performance of multi-scale model was compared with that of the pure CFD model without diffusion. The effects of diffusion, methane concentration, flow rate on the methane conversion and temperature distribution of monolithic reactor were also evaluated and discussed by the multi-scale model. The multi-scale model showed better accuracy than the pure CFD model without diffusion process. Different methane concentrations and gas flow rates had enormous effects on the methane conversion and temperature. Therefore, it was beneficial to the reaction process to adjust the methane concentration and gas flow rate appropriately.

Acknowledgement

Supported by : National Natural Science Foundation of China

References

  1. J.W. Li, J. J. Zhang, Z.G. Lei and B.H. Chen, Energy Fuel, 26, 443 (2012). https://doi.org/10.1021/ef201540h
  2. J. Hu, R. Hu, R. Ding, J. Chen and Y. Zhang, Catal. Commun., 21, 38 (2012). https://doi.org/10.1016/j.catcom.2012.01.008
  3. G. H. Zhu, J.Y. Han, D.Y. Zemlyanov and F. H. Ribeiro, J. Am. Chem. Soc., 126, 9896 (2004). https://doi.org/10.1021/ja049406s
  4. K. M. Santhosh, M. H. Aguirre, A. Weidenkaff and D. Ferri, J. Phys. Chem. C., 114, 9439 (2010). https://doi.org/10.1021/jp1019697
  5. B. Wang, Z. F. Qin and G. F. Wang, Catal. Lett., 143, 411 (2013). https://doi.org/10.1007/s10562-013-0988-4
  6. Y. G. Zhang, Z. F. Qin and G. F. Wang, Appl. Catal. B-Environ., 129, 172 (2013). https://doi.org/10.1016/j.apcatb.2012.09.021
  7. N. Jodeiri, J. P. Mmbaga and L. Wu, Comput. Chem. Eng., 39, 47 (2012). https://doi.org/10.1016/j.compchemeng.2011.12.009
  8. B. H. Yue, R. X. Zhou and X. M. Zheng, Fuel Process. Technol., 8, 728 (2008).
  9. R. F. Hick, H. H. Qi and M. L. Young, J. Catal., 122, 280 (1990). https://doi.org/10.1016/0021-9517(90)90282-O
  10. K. Persson, P.O. Thevenin and K. Jansson, Appl. Catal. A-Gen., 249, 165 (2003). https://doi.org/10.1016/S0926-860X(03)00193-5
  11. L. H. Xiao, K. P. Sun and X. L. Xu, Catal. Commun., 6, 796 (2005). https://doi.org/10.1016/j.catcom.2005.07.015
  12. F. J. Aires, S. Cadete, I. Kurzina, G.G. Cervantes and J.C. Bertolini, Catal. Today, 117, 518 (2006). https://doi.org/10.1016/j.cattod.2006.06.012
  13. S. Colussi, A. Trovarelli, C. Cristiani and L. Lietti, Catal. Today, 180, 124 (2012). https://doi.org/10.1016/j.cattod.2011.03.021
  14. A. Ersson, K. Persson and I. K. Adu, Catal. Today, 112, 157 (2006). https://doi.org/10.1016/j.cattod.2005.11.024
  15. H. Arai, T. Yamada and K. Eguchi, Appl. Catal., 26, 265 (1986). https://doi.org/10.1016/S0166-9834(00)82556-7
  16. I. Rossetti and L. Forni, Appl. Catal. B-Environ., 33, 345 (2001). https://doi.org/10.1016/S0926-3373(01)00194-1
  17. X.G. Ren, J.D. Zheng and Y. J. Song, Catal. Commun., 9, 807 (2008). https://doi.org/10.1016/j.catcom.2007.09.004
  18. A. J. Zarur and J.Y. Ying, Nature, 403, 65 (2000). https://doi.org/10.1038/47450
  19. J. Cheng, H. L. Wang and Z.P. Hao, Catal. Commun., 9, 690 (2008). https://doi.org/10.1016/j.catcom.2007.08.005
  20. P. Reyes, A. Figueroa, G. Pecchi and J. L. Fierro, Catal. Today, 62, 209 (2000). https://doi.org/10.1016/S0920-5861(00)00422-3
  21. S.R.G. Carrazan, R. Mateos and V. Rivesa, Catal. Today, 112, 161 (2006). https://doi.org/10.1016/j.cattod.2005.11.049
  22. S. Irandoust and B. Andersson, Monolithic Catalysts for Nonautomobile Applications Catal Rev Sci Eng., 30, 341 (1988). https://doi.org/10.1080/01614948808080809
  23. S. Su and A. Jenny, Fuel, 85, 1201 (2006). https://doi.org/10.1016/j.fuel.2005.11.010
  24. P. Marin, M. Hevia, S. Ordonez and F.V. Diez, Catal. Today, 105, 701 (2005). https://doi.org/10.1016/j.cattod.2005.06.003
  25. S.R. Shabanian, M. Rahimi, A. Amiri, S. Sharifnia and A.A. Alsairafi, Korean J. Chem. Eng., 29, 1531 (2012). https://doi.org/10.1007/s11814-012-0030-3
  26. B. Chalermsinsuwan, D. Gidaspow and P. Piumsomboon, Korean J. Chem. Eng., 30, 963 (2013). https://doi.org/10.1007/s11814-012-0216-8
  27. B. Chalermsinsuwan, T. Thummakul, D. Gidaspow and P. Piumsomboon, Korean J. Chem. Eng., 31, 350 (2014). https://doi.org/10.1007/s11814-013-0240-3
  28. C.H. Hwang and C. E. Lee, Fuel, 83, 987 (2004). https://doi.org/10.1016/j.fuel.2003.10.024
  29. C. P. Chou, Y. Jyh, H. Greg and S. William, Combust. Sci. Technol., 150, 1: 27 (2000).
  30. J. J. Chen, L. F. Yan and W.Y. Song, Reac. Kinet. Mech. Catal., 113, 19 (2013).
  31. A. Benedetto, G. Landi and V. Sarli, Catal. Today, 197, 206 (2012). https://doi.org/10.1016/j.cattod.2012.08.032
  32. Y. Zhao, Y. F. Zheng and F. Xin, Chem. Reac. Eng. Technol., 20, 357 (2004).
  33. J. J. Huang, Z.G. Jia and F.Y. Liu, Industrial Catalysis, 5, 23 (2013).
  34. S. Vaishali, S. Roy and P. L. Mills, Chem. Eng. Sci., 63, 5107 (2008). https://doi.org/10.1016/j.ces.2008.06.014
  35. C.R. Wilke, Chem. Eng. Prog., 46, 95 (1950).
  36. K.R. Rout, J. Solsvik and A.K. Nayak, Chem. Eng. Sci., 66, 4111 (2011). https://doi.org/10.1016/j.ces.2011.05.040
  37. K. Huang, S. Lin, J. J. Wang and Z. H. Luo, J. Industrial Eng. Chem., 29, 172 (2015). https://doi.org/10.1016/j.jiec.2015.04.001
  38. Y. Ozawa, Y. Tochihara, M. Nagai and S. Omi, Catal. Commun., 4, 87 (2003). https://doi.org/10.1016/S1566-7367(02)00262-5
  39. P. Reyes, A. Figueroa, G. Pecchi and J. L.G. Fierro, Catal. Today, 62, 209 (2000). https://doi.org/10.1016/S0920-5861(00)00422-3
  40. S. Guerrero, P. Araya and E. E. Wolf, Appl. Catal. A-Gen., 298, 243 (2006). https://doi.org/10.1016/j.apcata.2005.10.015
  41. P. Hurtado, S. Ordonez, S. Herminio and V. Fernando, Appl. Catal. B-Environ., 51, 229 (2004). https://doi.org/10.1016/j.apcatb.2004.03.006
  42. Y.Q. Zhuang, X. Gao, Y. P. Zhu and Z. H. Luo, Powder Technol., 221, 419 (2012). https://doi.org/10.1016/j.powtec.2012.01.041
  43. X.M. Chen, J. Dai and Z. H. Luo, Particuology, 11, 703 (2013). https://doi.org/10.1016/j.partic.2012.11.008
  44. G.Q. Chen, Z. H. Luo and X.Y. Lan, Chem. Eng. J., 228, 352 (2013). https://doi.org/10.1016/j.cej.2013.02.068