DOI QR코드

DOI QR Code

Photocatalytic degradation of methylene blue in aqueous solution using ceramsite coated with micro-Cu2O under visible-light irradiation

  • Li, Tianpeng (College of Environment Science and Engineering, Donghua University) ;
  • Sun, Tingting (School of Basic Medical Science, Wenzhou Medical University) ;
  • Aftab, Tallal Bin (College of Environment Science and Engineering, Donghua University) ;
  • Li, Dengxin (College of Environment Science and Engineering, Donghua University)
  • Received : 2016.08.19
  • Accepted : 2017.02.02
  • Published : 2017.04.01

Abstract

A novel ceramsite coated with micro-cuprous oxide ($Cu_2O$) catalyst was prepared and its photocatalytic activity was investigated by determining the degradation of methylene blue (MB) in aqueous solutions under Xe light. The results showed that the catalyst had many outstanding characteristics, such as higher BET specific surface area, larger pore size and stronger visible-light adsorption capacity, suggesting that it is a promising photocatalytic material. Under experimental conditions the initial concentration was 15 mg/L, pH was 3 and photocatalyst dosage was 0.5 g, and the degradation rate of MB reached 93.31% after Xe light was irradiated for 75 min. The photocatalytic degradation of MB followed the pseudo-first-order kinetics model, with high correlation coefficient values ($R^2$ >0.95). Some major degradation intermediates and desired products were identified by GC-MS and IC, respectively. Finally, the degradation pathways of MB by the catalyst under Xe light were proposed.

Acknowledgement

Supported by : Central Universities of China

References

  1. R. Davide, D. Daniele, F. Maurizio and A. Angelo, Chem. Soc. Rev., 38(7), 1999 (2009). https://doi.org/10.1039/b714786b
  2. T. Cetinkaya, L. Neuwirthova, K. M. Kutlakova, V. Tomasek and H. Akbulut, Appl. Surf. Sci., 279, 384 (2013). https://doi.org/10.1016/j.apsusc.2013.04.121
  3. Q. Sun, F. Xiao, S. Ren, Z. Dong and X.W. Su, Ceram. Int., 40, 11447 (2014). https://doi.org/10.1016/j.ceramint.2014.03.151
  4. C. C. Wang, J.R. Li, X. L. Lv, Y.Q. Zhang and G. S. Guo, Energy Environ. Sci., 7, 2831 (2014). https://doi.org/10.1039/C4EE01299B
  5. L. Ren, Z. Jin, W. Wang, H. Liu, J. Lai and J. Yang, Appl. Surf. Sci., 258, 1353 (2011). https://doi.org/10.1016/j.apsusc.2011.09.063
  6. A.D. Paola, E. Garcia-Lopez, G. Marci and L. Palmisano, J. Hazard. Mater., 211, 3 (2012).
  7. Y. Li, B. Wang, S. Liu, X. Duan and Z. Hu, Appl. Surf. Sci., 324, 736 (2015). https://doi.org/10.1016/j.apsusc.2014.11.027
  8. X. Shen, S. Chen, D. Mu, B. Wu and F. Wu, J. Power Sources, 238, 173 (2013). https://doi.org/10.1016/j.jpowsour.2013.03.085
  9. A. E. Kasmi, Z.Y. Tian, H. Vieker, A. Beyer and T. Chafik, Appl. Catal. B-Environ., 186(10), 10 (2016). https://doi.org/10.1016/j.apcatb.2015.12.034
  10. M.A. Bhosale, T. Sasaki and B. M. Bhanage, Catal. Sci. Technol., 4(12), 4274 (2014). https://doi.org/10.1039/C4CY00868E
  11. Y.T. Wang, Y.Q. Pei, W.F. Xiong, T.G. Liu, J. Li and S.L. Liu, Int. J. Biol. Macromol., 81, 477 (2015). https://doi.org/10.1016/j.ijbiomac.2015.08.037
  12. L. Liu, L. Ding, Y. G. Liu, W. J. An, S. L. Lin and Y. H. Liang, Appl. Surf. Sci., 364, 505 (2016). https://doi.org/10.1016/j.apsusc.2015.12.170
  13. M.A. Bhosale and B.M. Bhanage, Adv. Powder Technol., 27, 238 (2016). https://doi.org/10.1016/j.apt.2015.12.008
  14. M.K. Corbierre, N.S. Cameron, M. Sutton, S.G. Mochrie, L.B. Lurio and A. Ruhm, J. Am. Chem. Soc., 123, 10411 (2001). https://doi.org/10.1021/ja0166287
  15. D.M. Zhang, B. S. Hu, D. J. Guan and Z.T. Luo, Catal. Commun., 76, 7 (2016). https://doi.org/10.1016/j.catcom.2015.12.013
  16. S. Gelover, L. A. Gomez and K. Reyes, Water Res., 40, 3274 (2006). https://doi.org/10.1016/j.watres.2006.07.006
  17. J. F. Ma, J. F. Ding, L.Y. Li, J. Zou, Y. Kong and K. Sridhar, Ceram. Int., 41, 3191 (2015). https://doi.org/10.1016/j.ceramint.2014.10.172
  18. K. Laursen, T. J. White, D. J. Cresswell, P. J. Wainwright and J.R. Barton, J. Environ. Manage., 80(3), 208 (2006). https://doi.org/10.1016/j.jenvman.2005.08.026
  19. A.M. Mittelman, D. S. Lantagne, J. Rayner and K.D. Pennell, Environ. Sci. Technol., 49(14), 8515 (2015). https://doi.org/10.1021/acs.est.5b01428
  20. S. Maschio, E. Furlani, G. Tonello, N. Faraone, E. Aneggi and D. Minichelli, Waste Manage., 29(11), 2880 (2009). https://doi.org/10.1016/j.wasman.2009.06.016
  21. Y.Z. Zhuang, C.Y. Chen and T. Ji, Constr. Build. Mater., 46, 13 (2013). https://doi.org/10.1016/j.conbuildmat.2013.04.013
  22. E. Furlani, G. Tonello, S. Maschio, E. Aneggi, D. Minichelli and S. Bruckner, Ceram. Int., 37, 1293 (2011). https://doi.org/10.1016/j.ceramint.2010.12.005
  23. C. Wang and F. S. Zhang, Mater. Lett., 93, 380 (2013). https://doi.org/10.1016/j.matlet.2012.08.139
  24. A. Larbot, M. Bertrand, S. Marre and E. Prouzet, Sep. Purif. Technol., 32, 81 (2003). https://doi.org/10.1016/S1383-5866(03)00062-5
  25. Y.X. Zhao, Y. N. Yang, S. J. Yang, Q. H. Wang, C. P. Feng and Z.Y. Zhang, J. Colloid Interface Sci., 393, 264 (2013). https://doi.org/10.1016/j.jcis.2012.10.028
  26. C. Jiang, L.Y. Jia, B. Zhang, Y.L. He and K. George, J. Environ. Sci., 26, 466 (2014). https://doi.org/10.1016/S1001-0742(13)60410-6
  27. Y. Shi, K. Sun, X.B. Qi and Q. Gao, J. Wuhan University Technol. - Mater. Sci. Ed., 30(3), 649 (2015). https://doi.org/10.1007/s11595-015-1205-7
  28. Y. Cheng, W. J. Fan and L. Guo, Sep. Purif. Technol., 130, 167 (2014). https://doi.org/10.1016/j.seppur.2014.04.030
  29. M. Wegmann, B. Michen, T. Luxbacher, J. Fritsch and T. Graule, Water Res., 42(6), 1726 (2008). https://doi.org/10.1016/j.watres.2007.10.030
  30. Y. Zhang, F. He, S. B. Xia, L.W. Kong, D. Xu and Z.B. Wu, Ecol. Eng., 64, 186 (2014). https://doi.org/10.1016/j.ecoleng.2013.12.056
  31. S. Qiu, X. Huang, S.W. Xu and F. Ma, Appl. Biochem. Biotechnol., 176, 267 (2015). https://doi.org/10.1007/s12010-015-1572-8
  32. T. P. Li, T.T. Sun and D. X. Li, J. Mater. Cycles Waste Manage., DOI:10.1007/s10163-016-0547-3.
  33. T. P. Li, T.T. Sun and D.X. Li, Desalin. Water Treat., DOI:10.5004/ dwt.2016.0239.
  34. Z. Hosseinpour, A. Alemi, A.A. Khandar, X. Zhao and Y. Xie, New J. Chem., 39(7), 5470 (2015). https://doi.org/10.1039/C4NJ02298J
  35. H. H. Liu, Q.Y. Chen, Y. Yu, Z. H. Liu and G. Xue, J. Hazard. Mater., 263(2), 593 (2013). https://doi.org/10.1016/j.jhazmat.2013.10.021
  36. W.X. Zou, L. Zhang, L.C. Liu, X. B. Wang, J. F. Sun and S.G. Wu, Appl. Catal. B-Environ., 181, 495 (2016). https://doi.org/10.1016/j.apcatb.2015.08.017
  37. D. H. Guo, L. X. Wang, Y. J. Du, Z.Q. Ma and L. Shen, Mater. Lett., 160, 541 (2015). https://doi.org/10.1016/j.matlet.2015.08.055
  38. B. Qin, Y. B. Zhao, H. Li, L. Qiu and Z. Fan, Chinese J. Catal., 36, 1321 (2015). https://doi.org/10.1016/S1872-2067(15)60877-4
  39. S.N. Basahel, T. T. Ali, M. Mokhtar and K. Narasimharao, Nanoscale Res. Lett., 10, 73 (2015). https://doi.org/10.1186/s11671-015-0780-z
  40. J. S. Valente, F. Tzompantzi, J. Prince, J. G. H. Cortez and R. Gomez, Appl. Catal. B-Environ., 90, 330 (2009). https://doi.org/10.1016/j.apcatb.2009.03.019
  41. Y.Y. Xu, X. L. Jiao and D.R. Chen, J. Phys. Chem. C, 112(43), 16769 (2008). https://doi.org/10.1021/jp8058933
  42. C. H. Cao, L. Xiao, C. H. Chen and Q. H. Cao, Appl. Surf. Sci., 357, 1171 (2015). https://doi.org/10.1016/j.apsusc.2015.09.121
  43. W. Subramonian and T.Y. Wu, Water Air Soil Poll., 225(40), 1922 (2014). https://doi.org/10.1007/s11270-014-1922-0
  44. Omer Sahin, M. Kaya and C. Saka, Appl. Clay Sci., 116, 46 (2015).
  45. Y.D. Luo, Q.Q. Huang, B. Li, L. H. Dong, M.G. Fan and F.Y. Zhang, Appl. Surf. Sci., 357, 1072 (2015). https://doi.org/10.1016/j.apsusc.2015.09.126
  46. O. Ozdemir, M. Turan, A.Z. Turan, A. Faki and A.B. Engin, J. Hazard. Mater., 166, 647 (2009). https://doi.org/10.1016/j.jhazmat.2008.11.123
  47. D. Zhao, G. Sheng, C. Chen and X. Wang, Appl. Catal. B-Environ., 111, 303 (2012).
  48. F.C.F. Low, T.Y. Wu, C.Y. Teh, J.C. Juan and N. Balasubramaniam, Color Technol., 128(1), 44 (2012). https://doi.org/10.1111/j.1478-4408.2011.00326.x
  49. P. Dumrongrojthanath, A. Phuruangrat, P. Junploy, S. Thongtem and T. Thongtem, Res. Chem. Intermediat., 42, 1651 (2016). https://doi.org/10.1007/s11164-015-2109-z
  50. J.K. Dong, H.Y. Xu, F. J. Zhang, C. Chen, L. Liu and G.T. Wu, Appl. Catal. A-Gen., 470, 294 (2014). https://doi.org/10.1016/j.apcata.2013.11.010
  51. D. Gumus and F. Akbal, Water Air Soil Poll., 216, 117 (2011). https://doi.org/10.1007/s11270-010-0520-z
  52. R. S. Dariani, A. Esmaeili, A. Mortezaali and S. Dehghanpour, Optik, 127, 7143 (2016). https://doi.org/10.1016/j.ijleo.2016.04.026
  53. Q. Wang, S.L. Tian and P. Ning, Ind. Eng. Chem. Res., 53, 643 (2014). https://doi.org/10.1021/ie403402q