Electrochemical Performance of Ti-Si Alloy Anode using Nodule Type Current Collector

  • Shin, Min-Seon (Department of Nano Applied Engineering, Kangwon National University) ;
  • Park, Jung-Bae (Department of Nano Applied Engineering, Kangwon National University) ;
  • Lee, Sung-Man (Department of Nano Applied Engineering, Kangwon National University)
  • Received : 2017.07.07
  • Accepted : 2017.09.14
  • Published : 2017.11.30


The cycle performance of Ti-Si alloy anode material for Li-ion batteries has been investigated as a function of loading level of electrode using a nodule type of substrate, in which the current collector of flat foil is also used for comparison. The Ti-Si alloy powders are prepared by mechanical alloying method. The electrodes with the nodule type of current collector exhibit enhanced cycling performance compared to those using the flat foil because the alloy particles are more strongly adhered to substrate and the stress caused by lithiation and delithiation reaction can be effectively relaxed by nodule-type morphology. It appears, however, that the cycle performance is critically dependent on the loading level of electrode, even when the nodule type of current collector is applied. With high loading level, cracks are initiated at surface of electrode due to a steep stress gradient through the electrode thickness during cycling, leading to capacity fading.


Supported by : Kangwon National University


  1. M. N. Obrovac, L. Christensen, D. B. Le, J. R. Dahn, 'Alloy Design for Lithium-Ion Battery Anodes' J. Electrochem. Soc., 154, A849 (2007).
  2. X. Su, Q. Wu, J. Li, X. Xiao, A. Lott, W. Lu, B. W. Sheldon, J. Wu, 'Silicon-Based Nanomaterials for Lithium Ion Batteries : A Review' Adv. Energy Mater., 4, 1300882 (2014).
  3. W.-J. Zhang, 'A review of the electrochemical performance of alloy anodes for lithium-ion batteries' J. Power Sources., 196, 13 (2011).
  4. C.-M. Park, J.-H. Kim, H. Kim, H.-J. Shon, 'Li-alloy based anode materials for Li secondary batteries' Chem. Soc. Rev., 39, 3115 (2010).
  5. U. Kasavajjula, C. Wang, A. J. Appleby, 'Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells' J. Power Sources., 163, 1003 (2007).
  6. H. Wu, Y. Cui, 'Designing nanostructured Si anodes for high energy lithium ion batteries' Nano Today. 7,414 (2012).
  7. Y. F. Gao, M. Cho, M. Zhou, 'Mechanical reliability of alloy-based electrode materials for rechargeable Li-ion batteries' J. Mech. Sci. Technol., 27, 1205 (2013).
  8. J. R. Szezech, S. Jin, 'Nanostructured silicon for high capacity lithium battery anodes' Energy Environ. Sci., 4, 56 (2011).
  9. H. Kim, B. Han, J. Choo, J. Cho, 'Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries.' Angew. Chem. Int. Ed., 47, 10151 (2008).
  10. D. Larcher, S. Beattie, M. Morcrette, K. Edstrom, J.-C. Jumas, J.-M. Tarascon, 'Recent findings and prospects in the field of pure metals as negative electrodes for Li-ion batteries' J. Mater. Chem., 17, 3759 (2007).
  11. F. Luo, B. Liu, J. Zheng, G. Chu, K. Zhong, H. Li, X. Huang, L. Chen, 'Review-Nano-Silicon/Carbon Composite Anode Materials Towards Practical Application for Next Generation Li-Ion Batteries' J. Electrochem. Soc., 162, A2509 (2015).
  12. K. -L. Lee, J. -Y. Jung, S. -W. Lee, H. -S. Moon, J. -W. Park, 'Electrochemical characteristics of a-Si thin film anode for Li-ion rechargeable batteries' J. Power Sources., 129, 270 (2004).
  13. H. Guo, H. Zhao, C. Yin, W. Qju, 'A nanosized silicon thin film as high capacity anode material for Li-ion rechargeable batteries' Mater. Sci. Eng. B., 131, 173 (2006).
  14. T. Takamura, S. Ohara, M. Uehara, J. Suzuki, K. Sekine, 'A vacuum deposited Si film having a Li extraction capacity over 2000 mAh/g with a long cycle life' J. Power Sources., 129, 96 (2004).
  15. C. C. Nguyen, S. -W. Song, "Interfacial structural stabilization on amorphous silicon anode for improved cycling performance in lithium-ion batteries" Electrochim. Acta., 55, 3026, (2010).
  16. Y. -L. Kim, Y. -K. Sun, S. -M. Lee, "Enhanced electrochemical performance of silicon-based anode material by using current collector with modified surface morphology" Electrochim. Acta., 53, 4500 (2008).
  17. D. Reyter, S. Rousselot, D. Mazouzi, M. Gauthier, P. Moreau, B. Lestriez, D. Guyomard, L. Roue, "An electrochemically roughened Cu current collector for Si-based electrode in Li-ion batteries" J. Power Sources., 239, 308 (2013). 308.
  18. J. -B. Park, J. -S. Ham, M. -S. Shin, H. -K. Park, Y. -J. Lee, S. -M. Lee, "Synthesis and electrochemical characterization of anode material with titanium-silicon alloy solid core/nanoporous silicon shell structures for lithium rechargeable batteries" J. Power Sources., 299, 537 (2015).
  19. M. Gauthier, D. Mazouzi, D. Reyter, B. Lestriez, P. Moreau, D. Guyomard, L. Roue, "A low-cost and high performance ball-milled Si-based negative electrode for high-energy Li-ion batteries" Energy Environ. Sci., 6, 2145 (2013).
  20. H. Zheng, J. Li, X. Song, G. Liu, V. S. Battaglia, "A comprehensive understanding of electrode thickness effects on the electrochemical performances of Li-ion battery cathodes" Electrochimica Acta., 71, 258 (2012).
  21. J. C. Guo, X. L. Chen, C. S. Wang, "Carbon scaffold structured silicon anodes for lithium-ion batteries" J. Mater. Chem., 20, 5035 (2010).
  22. R. Ruffo, S. S. Hong, C. K. Chan, R. A. Huggins, Y. Cui, 'Impedance Analysis of Silicon Nanowire Lithium Ion Battery Anodes' J. Phys. Chem. C., 113, 11390 (2009).