DOI QR코드

DOI QR Code

도시열섬현상완화를 위한 그린인프라 전략

Green-infra Strategies for Mitigating Urban Heat Island

  • 박채연 (서울대학교 협동과정조경학) ;
  • 이동근 (서울대학교 조경.지역시스템 공학부) ;
  • 권유진 (서울대학교 협동과정조경학) ;
  • 허민주 (서울대학교 대학원)
  • Park, Chae-Yeon (Interdisciplinary Program in Landscape Architecture, Seoul National University) ;
  • Lee, Dong-Kun (Department of Landscape Architecture and Rural system Engineering, Seoul National University) ;
  • Kwon, Eu-gene (Interdisciplinary Program in Landscape Architecture, Seoul National University) ;
  • Her, Min-ju (Graduate School, Seoul National University)
  • 투고 : 2017.10.12
  • 심사 : 2017.10.23
  • 발행 : 2017.10.31

초록

Because of lack of accurate understanding of the mechanism of urban heat island (UHI) phenomenon and lack of scientific discussion, it is hard to come up with effective measures to mitigate UHI phenomenon. This study systematically described the UHI and suggested the solutions using green-infrastructure (green-infra). The factors that control UHI are very diverse: radiant heat flux, latent heat flux, storage heat flux, and artificial heat flux, and the air temperature is formed by the combination effect of radiation, conduction and convection. Green-infra strategies can improve thermal environment by reducing radiant heat flux (the albedo effect, the shade effect), increasing latent heat flux (the evapotranspiration effect), and creating a wind path (cooling air flow). As a result of measurement, green-infra could reduce radiant heat flux as $270W/m^2$ due to shadow effect and produce $170W/m^2$ latent heat flux due to evaporation. Finally, green-infra can be applied differently on the macro(urban) scale and micro scale, therefore, we should plan and design green-infra after the target objects of structures are set.

과제정보

연구 과제 주관 기관 : 국토교통과학기술진흥원

참고문헌

  1. Akbari, H. and H. Taha. 1992. The impact of trees and white surfaces on residential heating and cooling energy use in four canadian cities. Energy 17: 141-149. https://doi.org/10.1016/0360-5442(92)90063-6
  2. Akbari, H.․S. Davis․S. Dorsano․J. Huang and S. Winnett. 1992. Cooling Our Communities: A Guidebook On Tree Planting And Light-Colored Surfacing. Climate Ch. Washington, DC (United States): Environmental Protection Agency.
  3. Ansi/Ashrae. 2004. ANSI/ASHRAE 55:2004 Thermal Environmental Conditions for Human Occupancy. Ashrae 2004: 30. doi:10.1007/s11926-011-0203-9.
  4. Armson, D.․P. Stringer and A. R. Ennos. 2012. The effect of tree shade and grass on surface and globe temperatures in an urban area. Urban Forestry and Urban Greening 11. Elsevier GmbH.: 245-255. doi:10.1016/j.ufug.2012.05.002. https://doi.org/10.1016/j.ufug.2012.05.002
  5. Armson, D.․M. A. Rahman and A. R. Ennos. 2013. A Comparison of the Shading Effectiveness of Five Different Street Tree Species in Manchester , UK. arboriculture & urban forestry 39: 157-164.
  6. ASHRAE Handbook. American Society of Heating, Refrigerating and Air-Conditioning Engineers. 2013. ASHRAE Handbook-Fundamentals (SI); Climatic design information.
  7. ASRAE Standard. 2004. ANSI/ASHRAE/IESNA Standard 90. 1-2004. Energy Standard for Building except Low-Rise Residential Buildings.
  8. Chalhoub, M.․M. Bernier․Y. Coquet and M. Philippe. 2016. A simple heat and moisture transfer model to predict ground temperature for shallow ground heat exchangers. Renewable Energy 103. Elsevier Ltd: 295-307. doi:10.1016/j.renene.2016.11.027. https://doi.org/10.1016/j.renene.2016.11.027
  9. Cohen, P.․O. Potchter and A. Matzarakis. 2012. Daily and seasonal climatic conditions of green urban open spaces in the Mediterranean climate and their impact on human comfort. Building and Environment 51. Elsevier Ltd: 85-295. doi:10.1016/j.buildenv.2011.11.020. https://doi.org/10.1016/j.buildenv.2011.11.020
  10. Dang, Q.-L.․H. A. Margolis․M. Sy․M. R. Coyea․G. J. Collatz and C. L. Walthall. 1997. Profiles of photosynthetically active radiation, nitrogen and photosynthetic capacity in the boreal forest: Implications for scaling from leaf to canopy. Journal of Geophysical Research 102: 28845-28859. doi:10.1029/97JD00194. https://doi.org/10.1029/97JD00194
  11. Fanger, P. O. 1973. Assessment of thermal comfort practice. Occupational and Environmental Medicine 30: 313-324. doi:10.1136/oem.30.4.313. https://doi.org/10.1136/oem.30.4.313
  12. Gago, E. J..J. Roldan.R. Pacheco-Torres and J. Ordonez. 2013. The city and urban heat islands: A review of strategies to mitigate adverse effects. Renewable and Sustainable Energy Reviews 25. Elsevier: 749-758. doi:10.1016/j.rser.2013.05.057. https://doi.org/10.1016/j.rser.2013.05.057
  13. Grimmond, C. S. B. 1992. The Suburban Energy-Balance-Methodological Considerations and Results for a Midlatitude West-Coast City Under Winter and Spring Conditions Rid A-2179-2009. International Journal of Climatology 12: 481-497. doi:10.1002/joc.3370120506. https://doi.org/10.1002/joc.3370120506
  14. Gros, A.․E. Bozonnet and C. Inard. 2011. Modelling the radiative exchanges in urban areas: A review. Advances in Building Energy Research 5: 163-206. doi:10.1080/17512549.2011.582353. https://doi.org/10.1080/17512549.2011.582353
  15. Hong, B. and B. Lin. 2015. Numerical studies of the outdoor wind environment and thermal comfort at pedestrian level in housing blocks with different building layout patterns and trees arrangement. Renewable Energy 73. Elsevier Ltd: 18-27. doi:10.1016/j.renene.2014.05.060. https://doi.org/10.1016/j.renene.2014.05.060
  16. Hoppe, P. 1999. The physiological equivalent temperature - a universal index for the biometeorological assessment of the thermal environment. International Journal of Biometeorology 43: 71-75. doi:10.1007/s004840050118. https://doi.org/10.1007/s004840050118
  17. Ichinose, T.․K. Shimodozono and K. Hanaki. 1999. Impact of anthropogenic heat on urban climate in Tokyo. Atmospheric Environment 33: 3897-3909. doi:10.1016/S1352-2310(99)00132-6. https://doi.org/10.1016/S1352-2310(99)00132-6
  18. Jaganmohan, M.․S. Knapp․C. M. Buchmann and N. Schwarz. 2016. The Bigger, the Better? The Influence of Urban Green Space Design on Cooling Effects for Residential Areas. Journal of Environment Quality 45: 134. doi:10.2134/jeq2015.01.0062. https://doi.org/10.2134/jeq2015.01.0062
  19. Jamei, E.․P. Rajagopalan․M. Seyedmahmoudian and Y. Jamei. 2016. Review on the impact of urban geometry and pedestrian level greening on outdoor thermal comfort. Renewable and Sustainable Energy Reviews 54. Elsevier: 1002-1017. doi:10.1016/j.rser.2015.10.104. https://doi.org/10.1016/j.rser.2015.10.104
  20. Jendritzky, G.․A. Maarouf․D. Fiala and H. Staiger. 2002. An update on the development of a universal thermal climate index. In: 15th Conf. Biomet. Aerobiol. And 16th ICB02, 27 Oct-1 Nov 2002, Kansas City, AMS: 129-133. doi:10.1029/2002JD002184.Woo.
  21. Jendritzky, G.․R. de Dear and G. Havenith. 2012. UTCI-Why another thermal index? International Journal of Biometeorology 56: 421-428. doi:10.1007/s00484-011-0513-7. https://doi.org/10.1007/s00484-011-0513-7
  22. Kong, F.․H. Yin․C. Wang․G. Cavan and P. James. 2014. A satellite image-based analysis of factors contributing to the green-space cool island intensity on a city scale. Urban Forestry & Urban Greening 13. Elsevier GmbH.: 846-853. doi:10.1016/j.ufug.2014.09.009. https://doi.org/10.1016/j.ufug.2014.09.009
  23. Kong, F.․W. Yan․G. Zheng․H. Yin․G. Cavan․W. Zhan․N. Zhang and L. Cheng. 2016. Retrieval of three-dimensional tree canopy and shade using terrestrial laser scanning (TLS) data to analyze the cooling effect of vegetation. Agricultural and Forest Meteorology 217. Elsevier: 22-34.
  24. Krayenhoff, E. S.․A. Christen․A. Martilli and T. R. Oke. 2014. A Multi-layer Radiation Model for Urban Neighbourhoods with Trees. Boundary-Layer Meteorology 151: 139-178. doi:10.1007/s10546-013-9883-1. https://doi.org/10.1007/s10546-013-9883-1
  25. Lee, B.-Y. 2002. Short-term Variation in Class A Pan Evaporation. Korean Journal of Agricultural and Forest Meteorology 4: 197-202.
  26. Lee, S. 2011. Further Development of the Vegetated Urban Canopy Model Including a Grass-Covered Surface Parametrization and Photosynthesis Effects. Boundary-Layer Meteorology 140: 315-342. doi:10.1007/s10546-011-9603-7. https://doi.org/10.1007/s10546-011-9603-7
  27. Lee, S.․Y. Ryu and C. Jiang. 2015. Urban heat mitigation by roof surface materials during the East Asian summer monsoon. Environmental Research Letters 10. IOP Publishing: 124012. doi:10.1088/1748-9326/10/12/124012. https://doi.org/10.1088/1748-9326/10/12/124012
  28. Lee, W. K.․H. A. Lee and H. Park. 2016. Modifying effect of heat waves on the relationship between temperature and mortality. Journal of Korean Medical Science 31: 702-708. doi:10.3346/jkms.2016.31.5.702. https://doi.org/10.3346/jkms.2016.31.5.702
  29. Li, D.․E. Bou-Zeid and M. Oppenheimer. 2014. The effectiveness of cool and green roofs as urban heat island mitigation strategies. Environmental Research Letters 9. IOP Publishing: 55002. doi:10.1088/1748-9326/9/5/055002. https://doi.org/10.1088/1748-9326/9/5/055002
  30. Monteith, J. L. 1965. Evaporation and environment. Symposia of the Society for Experimental Biology. doi:10.1613/jair.301. https://doi.org/10.1613/jair.301
  31. Oleson, K. W.․B. Bonan․J. Feddema․M. Vertenstein and C. S. B. Grimmond. 2008. An urban parameterization for a global climate model. Part 1: Formulation and evaluation for two cities. Journal of Applied Meteorology and Climatology 47: 1038-1060. doi:10.1175/2007JAMC1597.1. https://doi.org/10.1175/2007JAMC1597.1
  32. Oliveira, S.․H. Andrade and T. Vaz. 2011. The cooling effect of green spaces as a contribution to the mitigation of urban heat: A case study in Lisbon. Building and Environment 46: 2186-2194. doi:10.1016/j.buildenv.2011.04.034. https://doi.org/10.1016/j.buildenv.2011.04.034
  33. Ooka, R.․H. Chen and S. Kato. 2008. Study on optimum arrangement of trees for design of pleasant outdoor environment using multi-objective genetic algorithm and coupled simulation of convection, radiation and conduction. Journal of Wind Engineering and Industrial Aerodynamics 96: 1733-1748. doi:10.1016/j.jweia.2008.02.039. https://doi.org/10.1016/j.jweia.2008.02.039
  34. Park, C.․D. K. Lee․S. Sung․J. Park and S. Jeong. 2016. Analyzing the Diurnal and Spatial Variation of Surface Urban Heat Island Intensity Distribution - Focused on 30 cities in Korea -. Journal of Korea Planning Association 51: 125-136. https://doi.org/10.17208/jkpa.2016.02.51.1.125
  35. Penman, H. L. 1948. Natural Evaporation from Open Water, Bare Soil and Grass. Proceedings of Royal Society of London. Series A. Mathematical and Physical Sciences 193: 120-145. https://doi.org/10.1098/rspa.1948.0037
  36. Potcher, O.․P. Cohen and A. Bitan. 2006. Climatic Behavior of Various Urban Pakrs During Hot and Humid Summer in The Mediterranean City of Tel Aviv, Israel. International Journal of Climatology 26: 1695-1711. doi:10.1002/joc. https://doi.org/10.1002/joc.1330
  37. Rahman, M. A.․A. Moser․T. Rötzer and S. Pauleit. 2017. Microclimatic differences and their influence on transpirational cooling of Tilia cordata in two contrasting street canyons in Munich, Germany. Agricultural and Forest Meteorology 232. Elsevier B.V.: 443-456. doi:10.1016/j.agrformet.2016.10.006. https://doi.org/10.1016/j.agrformet.2016.10.006
  38. Redon, E.․A. Lemonsu․V. Masson․B. Morille and M. Musy. 2016. Implementation of street trees in solar radiative exchange parameterization of TEB in SURFEX v8.0. Geoscientific Model Development Discussions: 1-46. doi:10.5194/gmd-2016-157. https://doi.org/10.5194/gmd-2016-157
  39. Sailor, D. J. and L. Lu. 2004. A top-down methodology for developing diurnal and seasonal anthropogenic heating profiles for urban areas. Atmospheric Environment 38: 2737-2748. doi:10.1016/j.atmosenv.2004.01.034. https://doi.org/10.1016/j.atmosenv.2004.01.034
  40. Shashua-bar, L.․M. E. H. A and Y. Tzamir. 2006. Integrated thermal effects of generic built forms and vegetation on the UCL microclimate. building and 41: 343-354. doi:10.1016/j.buildenv.2005.01.032. https://doi.org/10.1016/j.buildenv.2005.01.032
  41. Steemers, K.․N. Baker․D. Crowther․J. Dubiel and M. Nikolopoulou. 1998. Radia- tion absorption and urban texture. Building Research & Information 26: 103-112. doi:10.1080/096132198370029 https://doi.org/10.1080/096132198370029
  42. Taha, H. 1997. Urban climates and heat islands: albedo, evapotranspiration, and anthropogenic heat. Energy and buildings 25. Elsevier: 99-103. https://doi.org/10.1016/S0378-7788(96)00999-1
  43. Taha, H.․H. Akbari and A. Rosenfeld. 1991. Heat Island and Oasis Effects of Vegetative Canopies : Micro-Meteorological Field-Measurements. Journal of Applied Climatology 44: 123-138. https://doi.org/10.1007/BF00867999
  44. Wang, Y.․F. Bakker․R. De Groot․H. Wortche and R. Leemans. 2015. Effects of urban trees on local outdoor microclimate: synthesizing field measurements by numerical modelling. Urban Ecosystems: 1305-1331. doi:10.1007/s11252-015-0447-7. https://doi.org/10.1007/s11252-015-0447-7
  45. Zardo, L.․D. Geneletti․M. Perez-soba and M. Van Eupen. 2017. Estimating the cooling capacity of green infrastructures to support urban planning. Ecosystem Services 26. Elsevier B.V.: 225-235. doi:10.1016/j.ecoser.2017.06.016. https://doi.org/10.1016/j.ecoser.2017.06.016
  46. Zhou, Y.․Y. Wang․A. J. Gold and P. V. August. 2010. Modeling watershed rainfallrunoff relations using impervious surfacearea data with high spatial resolution. Hydrogeology Journal 18: 1413-1423. doi:10.1007/s10040-010-0618-9. https://doi.org/10.1007/s10040-010-0618-9
  47. www.climate.go.kr/home/bbs/view.php?bname=scenario&vcode=4673
  48. www.gukjenews.com/news/articleView.html?idxno=774053
  49. m.ilyoseoul.co.kr/news/articleView.html?idxno =201448#_adtep
  50. news.joins.com/article/18353315
  51. Taleghani, M.․D. J. Sailor․M. Tenpierik and A. van den Dobbelsteen. 2014. Thermal assessment of heat mitigation strategies: The case of Portland State University, Oregon, USA. Building and Environment 73. Elsevier Ltd: 138-150. doi:10.1016/j.buildenv.2013.12.006. https://doi.org/10.1016/j.buildenv.2013.12.006