DOI QR코드

DOI QR Code

Physicochemical Properties of Domestic Cherry Tomato Varieties

국내산 방울토마토의 이화학적 특성

  • Ahn, Jun-Bae (Dept. of Food Service & Culinary Arts, Seowon University)
  • 안준배 (서원대학교 호텔외식조리학과)
  • Received : 2017.09.17
  • Accepted : 2017.10.13
  • Published : 2017.10.30

Abstract

This study was conducted to determine the nutritional value of domestic cherry tomato varieties (Summerking, Qutiquti, and Minichal). The levels of amino acids, amino acid derivatives, and ${\gamma}-aminobutyric-acid$ (GABA) were analyzed using ion chromatography. In domestic cherry tomatoes, eighteen free amino acids were found including L-glutamic acid (L-Glu), L-glutamine (L-Gln), and L-aspartic acid (L-Asp). L-Glu was the most abundant amino acid, ranging from 1,533.17 mg/100 g to 1,920.65 mg/100 g (dry weight). The next abundant amino acids were L-Gln, ranging from 784.68 mg/100 g to 1,164.36 mg/100 g and L-Asp, ranging from 320.73 mg/100 g to 387.22 mg/100 g. Domestic cherry tomatoes contained eight essential amino acids except tryptophan and the total essential amino acid content was 297.30~432.43 mg/100 g (dry weight), which was 8.92~10.61% of total free amino acid. Several amino acid derivatives were found: L-carnitine (L-Car), hydroxylysine (Hyl), o-phosphoethanolamine (o-Pea), phosphoserine (p-Ser), ${\beta}-alanine$ (${\beta}-Ala$), N-methyl-histidine (Me-His), ethanolamine ($EtNH_2$), and L-citrulline (L-Cit). L-Car, transporting long-chain fatty acid into mitocondrial matrix, was the most abundant amino acid derivative in all domestic cherry tomatoes. A high level of GABA (313.18~638.57 mg/100 g), known as a neurotransmitter, was also found in all three domestic cherry tomatoes. These results revealed that domestic cherry tomatoes have a good balance of nutrient and bioactive compounds. Therefore, cherry tomatoes can be used as a functional food material.

References

  1. Abe, Y., Umemura, S., Sugimoto, K., Hirawa, N., Kato, Y., Yokoyama, N., ... , Ishii, M. (1995). Effect of green tea rich in $\gamma$-aminobutyric acid on blood pressure of Dahl salt-sensitive rats. American Journal of Hypertension, 8(1), 74-79. https://doi.org/10.1016/0895-7061(94)00141-W
  2. Ahn, J. B. (2016). Amino acid, amino acid metabolite, and GABA content of three domestic tomato varieties. Culinary Science & Hospitality Research, 22(6), 71-77. DOI: 10.20878/cshr.2016.22.6.007 https://doi.org/10.20878/cshr.2016.22.6.007
  3. Bowery, N. G., & Smart, T. G. (2006). GABA and glycine as neurotransmitters: A brief history. British Journal of Pharmacology, 147 Supply.1, S109-S119. https://doi.org/10.1038/sj.bjp.0706439
  4. Bremer, J. (1983). Carnitine-metabolism and functions. Physiological Reviews, 63(4), 1420-1480. https://doi.org/10.1152/physrev.1983.63.4.1420
  5. Choi, S. H., Kim, D. H., & Kim, D. S. (2011) Comparison of ascorbic acid, lycopene, $\beta$-carotene and $\alpha$-carotene contents in processed tomato products, tomato cultivar and part. The Korean Journal of Culinary Research, 17(4), 263-272.
  6. Choi, S. H., Lee, S. H., Kim, H. J., Lee, I. S., Nobuyuki, K., Levin, C. E., & Friedman, M. (2010). Changes in free amino acid, phenolic, chlorophyll, carotenoid, and glycoalkaloid contents in tomatoes during 11 stages of growth and inhibition of cervical and lung human cancer cells by green tomato extracts. Journal of Agricultural and Food Chemistry, 58(13), 7547-7556. https://doi.org/10.1021/jf100162j
  7. Davies, J. N., & Hobson, G. E. (1981). Constituents of tomato fruit - the influence of environment, nutrition, and geno-type. Critical Reviews in Food Science and Nutrition, 15 (3), 205-280. https://doi.org/10.1080/10408398109527317
  8. Deewatthanawonga, R., Rowellb, P., & Watkinsa, C. B. (2010). $\gamma$-Aminobutyric acid (GABA) metabolism in $CO_2$ treated tomatoes. Postharvest Biology and Technology, 57(2), 97-105. https://doi.org/10.1016/j.postharvbio.2010.03.007 https://doi.org/10.1016/j.postharvbio.2010.03.007
  9. Edward, G. (1999). Tomatoes, tomato-based products, lycopene and cancer. Journal of the National Cancer Institute, 91(4), 317-331. https://doi.org/10.1093/jnci/91.4.317
  10. Edward, G., Eric, B. R., Yan, L., Meir, J. S., & Walter, C. W. (2002). A prospective study of tomato products, lycopene and prostate cancer risk. Journal of the National Cancer Institute, 94(5), 391-398. https://doi.org/10.1093/jnci/94.5.391
  11. Friedman, M (2002). Tomato glycoalkaloids : Role in the plant and in the diet. Journal of Agricultural and Food Chemistry, 50(21), 5751-5780. https://doi.org/10.1021/jf020560c
  12. Friedman, M., & Levin, C. E. (2008). Review of methods for the reduction of dietary content and toxicity of acrylamide. Journal of Agricultural and Food Chemistry, 56(15), 6113-6140. https://doi.org/10.1021/jf0730486
  13. Frusciante, L., Carli, P., Ercolano, M. R., Pernice, R., Di Matteo, A., Fogliano, V., & Pellegrini, N. (2007). Antioxidant nutritional quality of tomato. Molecular Nutrition & Food Research, 51(5), 609-617. https://doi.org/10.1002/mnfr.200600158
  14. Kim, H. Y., & Ahn, J. B. (2014). Physicochemical properties of a Betatini variety of Lycopersicon esculentum var. cerasiforme (cherry tomato). Food Engineering Progress, 18(3), 222-228. https://doi.org/10.13050/foodengprog.2014.18.3.222
  15. Kim, S. J., Kim, J. Y., & Chang, Y. E. (2012). Physiological activites of saccharified cherry tomato gruel containing different levels of cherry tomato puree. Korean Journal of Food and Cookery Science, 28(6), 773-779. https://doi.org/10.9724/kfcs.2012.28.6.773
  16. Kinnersley, A. M., & Turano, F. J. (2000) $\gamma$-Aminobutyric acid (GABA) and plant responses to stress. Critical Reviews in Plant Sciences, 19(6), 479-509. https://doi.org/10.1080/07352680091139277
  17. Kaore, S. N., Amane, H. S., & Kaore. N. M. (2013). Citrulline: pharmacological perspectives and its role as an emerging biomarker in future. Fundamental & Clinical Pharmacology, 27(1), 35-50. https://doi.org/10.1111/j.1472-8206.2012.01059.x
  18. Lee, H. B., Yang, C. B., & Yu, T. J. (1972). Studies on the chemical composition of some fruit vegetables and fruits in Korea(I). Korean Journal of Food Science and Technology, 4(1), 36-43.
  19. Lee, K. R., Kozukue, N., Han, J. S., Park, J. H., Chang, E. Y., Baek, E. J., & Friedman, M. (2004). Glycoalkaloids and metabolites inhibit the growth of human colon(HT29) and liver(HepG2) cancer cells. Journal of Agricultural and Food Chemistry, 52(10), 2832-2839. https://doi.org/10.1021/jf030526d
  20. Lee, M. S., & Kim, G. H. (1986). Quality evaluation of raw tomato fruits. Journal of Food Science, 18(5), 335-338.
  21. Lenucci, M. S., Cadinu, D., Taurino, M., Piro, G., & Dalessandro, G. (2006). Antioxidant composition in cherry and highpigment tomato cultivars. Journal of Agricultural and Food Chemistry, 54(7), 2606-2613. https://doi.org/10.1021/jf052920c
  22. Na, Y. P., Lee, S. M., & Roh, K. S. (2007). Biochemical characterization of lectin isolated from cherry tomato. Journal of Life Science, 17(2), 254-259. https://doi.org/10.5352/JLS.2007.17.2.254
  23. Oshima, S., Ojima, F., Sakamoto, H., Ishiguro, Y., & Terao, J. (1998). Supplementation with carotenoids inhibits singlet oxygen-mediated oxidation of human plasma low-density lipoprotein. Journal of Agricultural and Food Chemistry, 44(8), 2306-2309. https://doi.org/10.1021/jf950350i
  24. Raffo, A., Malfa, G. L., Fogliano, V., Maiani, G., & Quaglia, G. (2006). Seasonal variations in antioxidant components of cherry tomatos (Lycopersicon esculentum cv. Naomi F1). Journal of Food Composition and Analysis 19(1), 11-19. https://doi.org/10.1016/j.jfca.2005.02.003
  25. Ryu, B. H., Moon, K. D., Kim, S. D., & Sohn, T. H. (1990). The changes of hardness and mineral components of tomato fruits during ripening. Journal of the Korean Society of Food Science and Nutrition, 19(2), 115-120.
  26. Shelp, B. J., Bown, A. W., & McLean, M. D. (1999). Metabolism and functions of gamma aminobutyric acid. Trends in Plant Science, 4(11), 446-452. https://doi.org/10.1016/S1360-1385(99)01486-7
  27. Stahl, W., Heinrich, U., Wiseman, S., Eichler, O., Sies, H., & Tronnier, H. (2001). Dietary tomato paste protects against ultraviolet light-induced erythema in human. Journal of Nutrition, 131(5), 1449-1451. https://doi.org/10.1093/jn/131.5.1449