DOI QR코드

DOI QR Code

INTEGRAL MEANS AND MAXIMUM AREA INTEGRAL PROBLEMS FOR CERTAIN FAMILY OF p-VALENT FUNCTIONS

  • Sharma, Navneet Lal (Discipline of Mathematics Indian Institute of Technology Indore)
  • Received : 2016.08.23
  • Accepted : 2017.08.04
  • Published : 2017.11.01

Abstract

The paper considers p-valent functions in the open unit disk. We study the integral means along with the area integral problems for functions belonging to a family of p-valent functions.

Keywords

p-valent analytic function;p-valent starlike and p-valent spirallike functions;subordination;integral means;Dirichlet-finite;area integral;and Gaussian hypergeometric functions

Acknowledgement

Supported by : National Board for Higher Mathematics

References

  1. G. E. Andrews, R. Askey, and R. Roy, Special Functions, Cambridge University press, U.K., 1999.
  2. M. K. Aouf, Coefficient estimates for some classes of p-valent functions, Internat. J. Math. Math. Sci. 11 (1988), no. 1, 47-54. https://doi.org/10.1155/S0161171288000092
  3. M. K. Aouf, A generalization of multivalent functions with negative coefficients, J. Korean Math. Soc. 25 (1988), no. 1, 53-66.
  4. A. Baernstein II, Integral means, univalent functions and circular symmetrization, Acta Math. 133 (1974), 139-169. https://doi.org/10.1007/BF02392144
  5. G. R. Blakley, Classes of p-valent starlike functions, Proc. Amer. Math. Soc. 13 (1962), 152-157.
  6. J. Clunie, On meromorphic schlicht functions, J. London Math. Soc. 34 (1959), 215-216.
  7. J. Clunie and F. R. Keogh, On starlike and convex schlicht functions, J. London Math. Soc. 35 (1960), 229-233.
  8. P. L. Duren, Univalent Functions, Springer-Verlag, New York, 1983.
  9. E. G. Goluzina, On the coefficients of a class of functions, regular in a disk and having an integral representation in it, J. Soviet Math. 6 (1974), 606-617.
  10. A. W. Goodman, On the Schwarz-Christoffel transformation and p-valent functions, Trans. Amer. Math. Soc. 68 (1950), 204-223.
  11. L. Gromova and A. Vasil'ev, On integral means of star-like functions, Proc. Indian Acad. Sci. Math. Sci. 112 (2002), no. 4, 563-570. https://doi.org/10.1007/BF02829689
  12. D. J. Hallenbeck and St. Ruscheweyh, Subordination by convex functions, Proc. Amer. Math. Soc. 52 (1975), 191-195. https://doi.org/10.1090/S0002-9939-1975-0374403-3
  13. W. Janowski, Some extremal problems for certain families of analytic functions, Ann. Polon. Math. 28 (1973), 297-326. https://doi.org/10.4064/ap-28-3-297-326
  14. S. S. Miller and P. T. Mocanu, Differential Subordinations: Theory and Applications, Vol. 225, Marcel Dekker, New York and Basel, 2000.
  15. M. Obradovic, S. Ponnusamy, and K.-J. Wirths, A proof of Yamashita's conjecture on area integral, Comput. Methods Funct. Theory 13 (2013), no. 3, 479-492. https://doi.org/10.1007/s40315-013-0033-z
  16. D. A. Patil and N. K. Thakare, On coefficient bound of p-valent $\lambda$-spiral functions of order $-\alpha}$, Indian J. Pure Appl. Math. 10 (1979), no. 7, 842-853.
  17. D. A. Patil and N. K. Thakare, On convex hulls and extreme points of p-valent starlike and convex classes with applications, Bull. Math. Soc. Sci. Math. R. S. Roumanie (N. S.) 27(75) (1983), no. 2, 145-160.
  18. Ch. Pommerenke, Univalent Functions, Vandenhoeck & Ruprecht in Gottingen, 1975.
  19. Ch. Pommerenke, Boundary Behaviour of Conformal Maps, Berlin: Springer, 1992.
  20. S. Ponnusamy, S. K. Sahoo, and N. L. Sharma, Maximal area integral problem for certain class of univalent analytic functions, Mediterr. J. Math. 13 (2016), no. 2, 607-623.
  21. S. Ponnusamy and K.-J. Wirths, On the problem of Gromova and Vasil'ev on integral means, and Yamashita's conjecture for spirallike functions, Ann. Acad. Sci. Fenn. Math. 39 (2014), no. 2, 721-731. https://doi.org/10.5186/aasfm.2014.3922
  22. E. D. Rainville, Special Functions, The Macmillan Company, New York, 1960.
  23. G. L. Reddy and K. S. Padmanabhan, On analytic functions with reference to the Bernardi integral operator, Bull. Austral. Math. Soc. 25 (1982), no. 3, 387-396. https://doi.org/10.1017/S0004972700005438
  24. M. S. Robertson, On the theory of univalent functions, Ann. of Math. 37 (1936), no. 2, 374-408. https://doi.org/10.2307/1968451
  25. M. S. Robertson, Quasi-subordination and coefficient conjectures, Bull. Amer. Math. Soc. 76 (1970), 1-9. https://doi.org/10.1090/S0002-9904-1970-12356-4
  26. W. Rogosinski, On the coefficients of subordinate functions, Proc. London Math. Soc. 48 (1943), no. 2, 48-82.
  27. S. K. Sahoo and N. L. Sharma, On area integral problem for analytic functions in the starlike family, J. Class. Anal. 6 (2015), no. 1, 72-83.
  28. S. K. Sahoo and N. L. Sharma, A note on a class of p-valent starlike functions of order beta, Sib. Math. J. 57 (2016), no. 2, 364-368. https://doi.org/10.1134/S003744661602018X
  29. N. L. Sharma, A note on Coefficient estimates for some classes of p-valent functions, Ukrainian Math. J., to appear.
  30. N. M. Temme, Special Functions: An Introduction to the Classical Functions of Math-ematical Physics, Wiley-Interscience, New York, 1996.
  31. A. Vasil'ev, Univalent functions in two dimensional free boundary problems, Acta Appl. Math. 79 (2003), no. 3, 249-280. https://doi.org/10.1023/B:ACAP.0000003674.35389.bb
  32. A. Vasil'ev and I. Markina, On the geometry of Hele-Shaw flows with small surface tension, Interface Free Bound. 5 (2003), no. 2, 183-192.
  33. S. Yamashita, Area and length maxima for univalent functions, Bull. Austral. Math. Soc. 41 (1990), no. 3, 435-439. https://doi.org/10.1017/S0004972700018311