DOI QR코드

DOI QR Code

Current Understanding of RANK Signaling in Osteoclast Differentiation and Maturation

  • Park, Jin Hee (Department of Life Science, Ewha Womans University) ;
  • Lee, Na Kyung (Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University) ;
  • Lee, Soo Young (Department of Life Science, Ewha Womans University)
  • Received : 2017.09.26
  • Accepted : 2017.10.16
  • Published : 2017.10.31

Abstract

Osteoclasts are bone-resorbing cells that are derived from hematopoietic precursor cells and require macrophage-colony stimulating factor and receptor activator of nuclear factor-${\kappa}B$ ligand (RANKL) for their survival, proliferation, differentiation, and activation. The binding of RANKL to its receptor RANK triggers osteoclast precursors to differentiate into osteoclasts. This process depends on RANKL-RANK signaling, which is temporally regulated by various adaptor proteins and kinases. Here we summarize the current understanding of the mechanisms that regulate RANK signaling during osteoclastogenesis. In the early stage, RANK signaling is mediated by recruiting adaptor molecules such as tumor necrosis factor receptorassociated factor 6 (TRAF6), which leads to the activation of mitogen-activated protein kinases (MAPKs), and the transcription factors nuclear factor-${\kappa}B$ (NF-${\kappa}B$) and activator protein-1 (AP-1). Activated NF-${\kappa}B$ induces the nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), which is the key osteoclastogenesis regulator. In the intermediate stage of signaling, the co-stimulatory signal induces $Ca^{2+}$ oscillation via activated phospholipase $C{\gamma}2$ ($PLC{\gamma}2$) together with c-Fos/AP-1, wherein $Ca^{2+}$ signaling facilitates the robust production of NFATc1. In the late stage of osteoclastogenesis, NFATc1 translocates into the nucleus where it induces numerous osteoclast-specific target genes that are responsible for cell fusion and function.

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. Aliprantis, A.O., Ueki, Y., Sulyanto, R., Park, A., Sigrist, K.S., Sharma, S.M., Ostrowski, M.C., Olsen, B.R., and Glimcher, L.H. (2008). NFATc1 in mice represses osteoprotegerin during osteoclastogenesis and dissociates systemic osteopenia from inflammation in cherubism. J. Clin. Invest. 118, 3775-3789. https://doi.org/10.1172/JCI35711
  2. Asagiri, M., and Takayanagi, H. (2007). The molecular understanding of osteoclast differentiation. Bone 40, 251-264. https://doi.org/10.1016/j.bone.2006.09.023
  3. Asagiri, M., Sato, K., Usami, T., Ochi, S., Nishina, H., Yoshida, H., Morita, I., Wagner, E.F., Mak, T.W., Serfling, E., et al. (2005). Autoamplification of NFATc1 expression determines its essential role in bone homeostasis. J. Exp. Med. 202, 1261-1269. https://doi.org/10.1084/jem.20051150
  4. Boyle, W.J., Simonet, W.S. and Lacey, D.L. (2003). Osteoclast differentiation and activation. Nature. 423, 337-342. https://doi.org/10.1038/nature01658
  5. Cella, M., Buonsanti, C., Strader, C., Kondo, T., Salmaggi, A., and Colonna, M. (2003). Impaired differentiation of osteoclasts in TREM- 2-deficient individuals. J. Exp. Med. 198, 645-651. https://doi.org/10.1084/jem.20022220
  6. Chambers, T.J. and Fuller, K. (2011). How are osteoclasts induced to resorb bone? Ann. N Y Acad. Sci. 1240, 1-6. https://doi.org/10.1111/j.1749-6632.2011.06249.x
  7. Cheng, X., Kinosaki, M., Murali, R., and Greene, M.I. (2003). The TNF receptor superfamily: role in immune inflammation and bone formation. Immunol. Res. 27, 287-294. https://doi.org/10.1385/IR:27:2-3:287
  8. Choi, H.K., Kang, H.R., Jung, E., Kim, T.E., Lin, J.J. and Lee, S.Y. (2013). Early estrogen-induced gene 1, a novel RANK signaling component, is essential for osteoclastogenesis. Cell Res. 23, 524-536. https://doi.org/10.1038/cr.2013.33
  9. Darnay, B.G., Haridas, V., Ni, J., Moore, P.A. and Aggarwal, B.B. (1998). Characterization of the intracellular domain of receptor activator of NF-kappaB (RANK). Interaction with tumor necrosis factor receptor-associated factors and activation of NF-kappab and c- Jun N-terminal kinase. J. Biol. Chem. 273, 20551-20555. https://doi.org/10.1074/jbc.273.32.20551
  10. David, J.P., Sabapathy, K., Hoffmann, O., Idarraga, M.H. and Wagner, E.F. (2002). JNK1 modulates osteoclastogenesis through both c-Jun phosphorylation-dependent and -independent mechanisms. J. Cell Sci. 115, 4317-4325. https://doi.org/10.1242/jcs.00082
  11. Dougall, W.C., Glaccum, M., Charrier, K., Rohrbach, K., Brasel, K., De Smedt, T., Daro, E., Smith, J., Tometsko, M.E., Maliszewski, C.R., et al. (1999). RANK is essential for osteoclast and lymph node development. Genes Dev. 13, 2412-2424. https://doi.org/10.1101/gad.13.18.2412
  12. Duran, A., Serrano, M., Leitges, M., Flores, J.M., Picard, S., Brown, J.P., Moscat, J., and Diaz-Meco, M.T. (2004). The atypical PKCinteracting protein p62 is an important mediator of RANK-activated osteoclastogenesis. Dev. Cell. 6, 303-309. https://doi.org/10.1016/S1534-5807(03)00403-9
  13. Faccio, R., Teitelbaum, S.L., Fujikawa, K., Chappel, J., Zallone, A., Tybulewicz, V.L., Ross, F.P., and Swat, W. (2005). Vav3 regulates osteoclast function and bone mass. Nat. Med. 11, 284-290. https://doi.org/10.1038/nm1194
  14. Franzoso, G., Carlson, L., Xing, L., Poljak, L., Shores, E.W., Brown, K.D., Leonardi, A., Tran, T., Boyce, B.F. and Siebenlist, U. (1997). Requirement for NF-kappaB in osteoclast and B-cell development. Genes Dev. 11, 3482-3496. https://doi.org/10.1101/gad.11.24.3482
  15. Fumoto, T., Takeshita, S., Ito, M., and Ikeda, K. (2014). Physiological functions of osteoblast lineage and T cell-derived RANKL in bone homeostasis. J. Bone Miner Res. 29, 830-842. https://doi.org/10.1002/jbmr.2096
  16. Ghosh, S., and Karin, M. (2002). Missing pieces in the NF-kappaB puzzle. Cell 109 Suppl, S81-96. https://doi.org/10.1016/S0092-8674(02)00703-1
  17. Grigoriadis, A.E., Wang, Z.Q., Cecchini, M.G., Hofstetter, W., Felix, R., Fleisch, H.A., and Wagner, E.F. (1994). c-Fos: a key regulator of osteoclast-macrophage lineage determination and bone remodeling. Science 266, 443-448. https://doi.org/10.1126/science.7939685
  18. He, Y., Staser, K., Rhodes, S.D., Liu, Y., Wu, X., Park, S.J., Yuan, J., Yang, X., Li, X., Jiang, L., et al. (2011). Erk1 positively regulates osteoclast differentiation and bone resorptive activity. PLoS One 6, e24780. https://doi.org/10.1371/journal.pone.0024780
  19. Hogan, P.G., Chen, L., Nardone, J., and Rao, A. (2003). Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev. 17, 2205-2232. https://doi.org/10.1101/gad.1102703
  20. Humphrey, M.B., Daws, M.R., Spusta, S.C., Niemi, E.C., Torchia, J.A., Lanier, L.L., Seaman, W.E., and Nakamura, M.C. (2006). TREM2, a DAP12-associated receptor, regulates osteoclast differentiation and function. J. Bone Miner Res. 21, 237-245.
  21. Ikeda, F., Nishimura, R., Matsubara, T., Tanaka, S., Inoue, J., Reddy, S.V., Hata, K., Yamashita, K., Hiraga, T., Watanabe, T., et al. (2004). Critical roles of c-Jun signaling in regulation of NFAT family and RANKL-regulated osteoclast differentiation. J. Clin. Invest. 114, 475- 484. https://doi.org/10.1172/JCI200419657
  22. Iotsova, V., Caamano, J., Loy, J., Yang, Y., Lewin, A., and Bravo, R. (1997). Osteopetrosis in mice lacking NF-kappaB1 and NF-kappaB2. Nat. Med. 3, 1285-1289. https://doi.org/10.1038/nm1197-1285
  23. Jang, H.D., Shin, J.H., Park, D.R., Hong, J.H., Yoon, K., Ko, R., Ko, C.Y., Kim, H.S., Jeong, D., Kim, N., et al. (2011). Inactivation of glycogen synthase kinase-3beta is required for osteoclast differentiation. J. Biol. Chem. 286, 39043-39050. https://doi.org/10.1074/jbc.M111.256768
  24. Karsenty, G., and Wagner, E.F. (2002). Reaching a genetic and molecular understanding of skeletal development. Dev. Cell. 2, 389- 406. https://doi.org/10.1016/S1534-5807(02)00157-0
  25. Kim, N., Takami, M., Rho, J., Josien, R., and Choi, Y. (2002). A novel member of the leukocyte receptor complex regulates osteoclast differentiation. J. Exp. Med. 195, 201-209. https://doi.org/10.1084/jem.20011681
  26. Kim, K., Kim, J.H., Lee, J., Jin, H.M., Kook, H., Kim, K.K., Lee, S.Y., and Kim, N. (2007). MafB negatively regulates RANKL-mediated osteoclast differentiation. Blood 109, 3253-3259. https://doi.org/10.1182/blood-2006-09-048249
  27. Kim, K., Lee, S.H., Ha Kim, J., Choi, Y., and Kim, N. (2008). NFATc1 induces osteoclast fusion via up-regulation of Atp6v0d2 and the dendritic cell-specific transmembrane protein (DC-STAMP). Mol. Endocrinol. 22, 176-185. https://doi.org/10.1210/me.2007-0237
  28. Kim, H., Choi, H.K., Shin, J.H., Kim, K.H., Huh, J.Y., Lee, S.A., Ko, C.Y., Kim, H.S., Shin, H.I., Lee, H.J., et al. (2009). Selective inhibition of RANK blocks osteoclast maturation and function and prevents bone loss in mice. J. Clin. Invest. 119, 813-825. https://doi.org/10.1172/JCI36809
  29. Kobayashi, N., Kadono, Y., Naito, A., Matsumoto, K., Yamamoto, T., Tanaka, S., and Inoue, J. (2001). Segregation of TRAF6-mediated signaling pathways clarifies its role in osteoclastogenesis. EMBO J. 20, 1271-1280. https://doi.org/10.1093/emboj/20.6.1271
  30. Koga, T., Inui, M., Inoue, K., Kim, S., Suematsu, A., Kobayashi, E., Iwata, T., Ohnishi, H., Matozaki, T., Kodama, T., et al. (2004). Costimulatory signals mediated by the ITAM motif cooperate with RANKL for bone homeostasis. Nature 428, 758-763. https://doi.org/10.1038/nature02444
  31. Koga, T., Matsui, Y., Asagiri, M., Kodama, T., de Crombrugghe, B., Nakashima, K. and Takayanagi, H. (2005). NFAT and Osterix cooperatively regulate bone formation. Nat. Med. 11, 880-885. https://doi.org/10.1038/nm1270
  32. Kong, Y.Y., Feige, U., Sarosi, I., Bolon, B., Tafuri, A., Morony, S., Capparelli, C., Li, J., Elliott, R., McCabe, S., et al. (1999). Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature 402, 304-309. https://doi.org/10.1038/46303
  33. Lee, N.K., Choi, Y.G., Baik, J.Y., Han, S.Y., Jeong, D.W., Bae, Y.S., Kim, N., and Lee, S.Y. (2005). A crucial role for reactive oxygen species in RANKL-induced osteoclast differentiation. Blood 106, 852- 859. https://doi.org/10.1182/blood-2004-09-3662
  34. Li, J., Sarosi, I., Yan, X.Q., Morony, S., Capparelli, C., Tan, H.L., McCabe, S., Elliott, R., Scully, S., Van, G., et al. (2000). RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proc. Natl. Acad. Sci. USA 97, 1566-1571. https://doi.org/10.1073/pnas.97.4.1566
  35. Li, X., Udagawa, N., Itoh, K., Suda, K., Murase, Y., Nishihara, T., Suda, T., and Takahashi, N. (2002). p38 MAPK-mediated signals are required for inducing osteoclast differentiation but not for osteoclast function. Endocrinology 143, 3105-3113. https://doi.org/10.1210/endo.143.8.8954
  36. Lin, J., Lee, D., Choi, Y., and Lee, S.Y. (2015). The scaffold protein RACK1 mediates the RANKL-dependent activation of p38 MAPK in osteoclast precursors. Sci. Signal. 8, ra54. https://doi.org/10.1126/scisignal.2005867
  37. Lomaga, M.A., Yeh, W.C., Sarosi, I., Duncan, G.S., Furlonger, C., Ho, A., Morony, S., Capparelli, C., Van, G., Kaufman, S., et al. (1999). TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Genes Dev. 13, 1015-1024. https://doi.org/10.1101/gad.13.8.1015
  38. Mao, D., Epple, H., Uthgenannt, B., Novack, D.V., and Faccio, R. (2006). PLCgamma2 regulates osteoclastogenesis via its interaction with ITAM proteins and GAB2. J. Clin. Invest. 116, 2869-2879. https://doi.org/10.1172/JCI28775
  39. Matsumoto, M., Kogawa, M., Wada, S., Takayanagi, H., Tsujimoto, M., Katayama, S., Hisatake, K., and Nogi, Y. (2004). Essential role of p38 mitogen-activated protein kinase in cathepsin K gene expression during osteoclastogenesis through association of NFATc1 and PU.1. J. Biol. Chem. 279, 45969-45979. https://doi.org/10.1074/jbc.M408795200
  40. Miyauchi, Y., Ninomiya, K., Miyamoto, H., Sakamoto, A., Iwasaki, R., Hoshi, H., Miyamoto, K., Hao, W., Yoshida, S., Morioka, H., et al. (2010). The Blimp1-Bcl6 axis is critical to regulate osteoclast differentiation and bone homeostasis. J. Exp. Med. 207, 751-762. https://doi.org/10.1084/jem.20091957
  41. Mizukami, J., Takaesu, G., Akatsuka, H., Sakurai, H., Ninomiya-Tsuji, J., Matsumoto, K. and Sakurai, N. (2002). Receptor activator of NFkappaB ligand (RANKL) activates TAK1 mitogen-activated protein kinase kinase kinase through a signaling complex containing RANK, TAB2, and TRAF6. Mol. Cell Biol. 22, 992-1000. https://doi.org/10.1128/MCB.22.4.992-1000.2002
  42. Moon, J.B., Kim, J.H., Kim, K., Youn, B.U., Ko, A., Lee, S.Y., and Kim, N. (2012). Akt induces osteoclast differentiation through regulating the GSK3beta/NFATc1 signaling cascade. J. Immunol. 188, 163-169. https://doi.org/10.4049/jimmunol.1101254
  43. Naito, A., Azuma, S., Tanaka, S., Miyazaki, T., Takaki, S., Takatsu, K., Nakao, K., Nakamura, K., Katsuki, M., Yamamoto, T., et al. (1999). Severe osteopetrosis, defective interleukin-1 signalling and lymph node organogenesis in TRAF6-deficient mice. Genes Cells 4, 353-362. https://doi.org/10.1046/j.1365-2443.1999.00265.x
  44. Nakashima, T., Hayashi, M., Fukunaga, T., Kurata, K., Oh-Hora, M., Feng, J.Q., Bonewald, L.F., Kodama, T., Wutz, A., Wagner, E.F., et al. (2011). Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat. Med. 17, 1231-1234. https://doi.org/10.1038/nm.2452
  45. Ninomiya-Tsuji, J., Kishimoto, K., Hiyama, A., Inoue, J., Cao, Z., and Matsumoto, K. (1999). The kinase TAK1 can activate the NIK-I kappaB as well as the MAP kinase cascade in the IL-1 signalling pathway. Nature 398, 252-256. https://doi.org/10.1038/18465
  46. Nishikawa, K., Nakashima, T., Hayashi, M., Fukunaga, T., Kato, S., Kodama, T., Takahashi, S., Calame, K. and Takayanagi, H. (2010). Blimp1-mediated repression of negative regulators is required for osteoclast differentiation. Proc. Natl. Acad. Sci. USA 107, 3117-3122. https://doi.org/10.1073/pnas.0912779107
  47. Oikawa, T., Oyama, M., Kozuka-Hata, H., Uehara, S., Udagawa, N., Saya, H. and Matsuo, K. (2012). Tks5-dependent formation of circumferential podosomes/invadopodia mediates cell-cell fusion. J. Cell Biol. 197, 553-568. https://doi.org/10.1083/jcb.201111116
  48. Park, S.J., Huh, J.E., Shin, J., Park, D.R., Ko, R., Jin, G.R., Seo, D.H., Kim, H.S., Shin, H.I., Oh, G.T., et al. (2016). Sirt6 cooperates with Blimp1 to positively regulate osteoclast differentiation. Sci. Rep. 6, 26186. https://doi.org/10.1038/srep26186
  49. Putney, J.W., Jr. (2005). Capacitative calcium entry: sensing the calcium stores. J. Cell Biol. 169, 381-382. https://doi.org/10.1083/jcb.200503161
  50. Sheridan, C.M., Heist, E.K., Beals, C.R., Crabtree, G.R., and Gardner, P. (2002). Protein kinase A negatively modulates the nuclear accumulation of NF-ATc1 by priming for subsequent phosphorylation by glycogen synthase kinase-3. J. Biol. Chem. 277, 48664-48676. https://doi.org/10.1074/jbc.M207029200
  51. Shin, J., Jang, H., Lin, J., and Lee, S.Y. (2014). PKCbeta positively regulates RANKL-induced osteoclastogenesis by inactivating GSK- 3beta. Mol. Cells 37, 747-752. https://doi.org/10.14348/molcells.2014.0220
  52. Shinohara, M., Koga, T., Okamoto, K., Sakaguchi, S., Arai, K., Yasuda, H., Takai, T., Kodama, T., Morio, T., Geha, R.S., et al. (2008). Tyrosine kinases Btk and Tec regulate osteoclast differentiation by linking RANK and ITAM signals. Cell 132, 794-806. https://doi.org/10.1016/j.cell.2007.12.037
  53. Taguchi, Y., Gohda, J., Koga, T., Takayanagi, H., and Inoue, J. (2009). A unique domain in RANK is required for Gab2 and PLCgamma2 binding to establish osteoclastogenic signals. Genes Cells 14, 1331- 1345. https://doi.org/10.1111/j.1365-2443.2009.01351.x
  54. Takayanagi, H., Kim, S., Koga, T., Nishina, H., Isshiki, M., Yoshida, H., Saiura, A., Isobe, M., Yokochi, T., Inoue, J., et al. (2002). Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev. Cell 3, 889-901. https://doi.org/10.1016/S1534-5807(02)00369-6
  55. Teitelbaum, S.L. (2000). Bone resorption by osteoclasts. Science 289, 1504-1508. https://doi.org/10.1126/science.289.5484.1504
  56. Teitelbaum, S.L. and Ross, F.P. (2003). Genetic regulation of osteoclast development and function. Nat. Rev. Genet. 4, 638-649. https://doi.org/10.1038/nrg1122
  57. Vaananen, H.K., Karhukorpi, E.K., Sundquist, K., Wallmark, B., Roininen, I., Hentunen, T., Tuukkanen, J., and Lakkakorpi, P. (1990). Evidence for the presence of a proton pump of the vacuolar H(+)- ATPase type in the ruffled borders of osteoclasts. J. Cell Biol. 111, 1305-1311. https://doi.org/10.1083/jcb.111.3.1305
  58. Wada, T., Nakashima, T., Oliveira-dos-Santos, A.J., Gasser, J., Hara, H., Schett, G. and Penninger, J.M. (2005). The molecular scaffold Gab2 is a crucial component of RANK signaling and osteoclastogenesis. Nat. Med. 11, 394-399. https://doi.org/10.1038/nm1203
  59. Wagner, E.F. (2002). Functions of AP1 (Fos/Jun) in bone development. Ann. Rheum. Dis. 61 Suppl 2, ii40-42. https://doi.org/10.1136/ard.61.suppl_2.ii40
  60. Wang, Z.Q., Ovitt, C., Grigoriadis, A.E., Mohle-Steinlein, U., Ruther, U., and Wagner, E.F. (1992). Bone and haematopoietic defects in mice lacking c-fos. Nature 360, 741-745. https://doi.org/10.1038/360741a0
  61. Wong, B.R., Josien, R., Lee, S.Y., Vologodskaia, M., Steinman, R.M., and Choi, Y. (1998). The TRAF family of signal transducers mediates NF-kappaB activation by the TRANCE receptor. J. Biol. Chem. 273, 28355-28359. https://doi.org/10.1074/jbc.273.43.28355
  62. Wong, B.R., Besser, D., Kim, N., Arron, J.R., Vologodskaia, M., Hanafusa, H., and Choi, Y. (1999). TRANCE, a TNF family member, activates Akt/PKB through a signaling complex involving TRAF6 and c-Src. Mol. Cell. 4, 1041-1049. https://doi.org/10.1016/S1097-2765(00)80232-4
  63. Xiong, J., Onal, M., Jilka, R.L., Weinstein, R.S., Manolagas, S.C., and O'Brien, C.A. (2011). Matrix-embedded cells control osteoclast formation. Nat. Med. 17, 1235-1241. https://doi.org/10.1038/nm.2448
  64. Yagi, M., Ninomiya, K., Fujita, N., Suzuki, T., Iwasaki, R., Morita, K., Hosogane, N., Matsuo, K., Toyama, Y., Suda, T., et al. (2007). Induction of DC-STAMP by alternative activation and downstream signaling mechanisms. J. Bone Miner Res. 22, 992-1001. https://doi.org/10.1359/jbmr.070401
  65. Yamashita, T., Yao, Z., Li, F., Zhang, Q., Badell, I.R., Schwarz, E.M., Takeshita, S., Wagner, E.F., Noda, M., Matsuo, K., et al. (2007). NFkappaB p50 and p52 regulate receptor activator of NF-kappaB ligand (RANKL) and tumor necrosis factor-induced osteoclast precursor differentiation by activating c-Fos and NFATc1. J. Biol. Chem. 282, 18245-18253. https://doi.org/10.1074/jbc.M610701200
  66. Yasuda, H., Shima, N., Nakagawa, N., Yamaguchi, K., Kinosaki, M., Mochizuki, S., Tomoyasu, A., Yano, K., Goto, M., Murakami, A., et al. (1998). Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc. Natl. Acad. Sci. USA 95, 3597-3602. https://doi.org/10.1073/pnas.95.7.3597
  67. Ye, H., Arron, J.R., Lamothe, B., Cirilli, M., Kobayashi, T., Shevde, N.K., Segal, D., Dzivenu, O.K., Vologodskaia, M., Yim, M., et al. (2002). Distinct molecular mechanism for initiating TRAF6 signalling. Nature 418, 443-447. https://doi.org/10.1038/nature00888
  68. Zaidi, M. (2007). Skeletal remodeling in health and disease. Nat. Med. 13, 791-801. https://doi.org/10.1038/nm1593
  69. Zhao, B., Takami, M., Yamada, A., Wang, X., Koga, T., Hu, X., Tamura, T., Ozato, K., Choi, Y., Ivashkiv, L.B., et al. (2009). Interferon regulatory factor-8 regulates bone metabolism by suppressing osteoclastogenesis. Nat. Med. 15, 1066-1071. https://doi.org/10.1038/nm.2007
  70. Zou, W., Kitaura, H., Reeve, J., Long, F., Tybulewicz, V.L., Shattil, S.J., Ginsberg, M.H., Ross, F.P., and Teitelbaum, S.L. (2007). Syk, c-Src, the alphavbeta3 integrin, and ITAM immunoreceptors, in concert, regulate osteoclastic bone resorption. J. Cell Biol. 176, 877-888. https://doi.org/10.1083/jcb.200611083

Cited by

  1. Bone Remodeling and the Role of TRAF3 in Osteoclastic Bone Resorption vol.9, pp.1664-3224, 2018, https://doi.org/10.3389/fimmu.2018.02263
  2. Isosteviol Derivative Inhibits Osteoclast Differentiation and Ameliorates Ovariectomy-Induced Osteoporosis vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-29257-1
  3. Constant hypoxia inhibits osteoclast differentiation and bone resorption by regulating phosphorylation of JNK and IκBα vol.68, pp.2, 2019, https://doi.org/10.1007/s00011-018-1209-9