DOI QR코드

DOI QR Code

Asthma and the Risk of Rheumatoid Arthritis: An Insight into the Heterogeneity and Phenotypes of Asthma

  • Rolfes, Mary Claire (Mayo Medical School) ;
  • Juhn, Young Jun (Department of Pediatric and Adolescent Medicine/Internal Medicine, Mayo Clinic) ;
  • Wi, Chung-Il (Department of Pediatric and Adolescent Medicine, Mayo Clinic) ;
  • Sheen, Youn Ho (Department of Pediatric and Adolescent Medicine, Mayo Clinic)
  • Received : 2016.10.20
  • Accepted : 2016.12.08
  • Published : 2017.04.30

Abstract

Asthma is traditionally regarded as a chronic airway disease, and recent literature proves its heterogeneity, based on distinctive clusters or phenotypes of asthma. In defining such asthma clusters, the nature of comorbidity among patients with asthma is poorly understood, by assuming no causal relationship between asthma and other comorbid conditions, including both communicable and noncommunicable diseases. However, emerging evidence suggests that the status of asthma significantly affects the increased susceptibility of the patient to both communicable and noncommunicable diseases. Specifically, the impact of asthma on susceptibility to noncommunicable diseases such as chronic systemic inflammatory diseases (e.g., rheumatoid arthritis), may provide an important insight into asthma as a disease with systemic inflammatory features, a conceptual understanding between asthma and asthma-related comorbidity, and the potential implications on the therapeutic and preventive interventions for patients with asthma. This review discusses the currently under-recognized clinical and immunological phenotypes of asthma; specifically, a higher risk of developing a systemic inflammatory disease such as rheumatoid arthritis and their implications, on the conceptual understanding and management of asthma. Our discussion is divided into three parts: literature summary on the relationship between asthma and the risk of rheumatoid arthritis; potential mechanisms underlying the association; and implications on asthma management and research.

Keywords

Acknowledgement

Supported by : NIH, Sanford Foundation

References

  1. To T, Stanojevic S, Moores G, Gershon AS, Bateman ED, Cruz AA, et al. Global asthma prevalence in adults: findings from the cross-sectional world health survey. BMC Public Health 2012;12:204. https://doi.org/10.1186/1471-2458-12-204
  2. Asher MI, Montefort S, Bjorksten B, Lai CK, Strachan DP, Weiland SK, et al. Worldwide time trends in the prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and eczema in childhood: ISAAC Phases One and Three repeat multicountry cross-sectional surveys. Lancet 2006;368:733-43. https://doi.org/10.1016/S0140-6736(06)69283-0
  3. World Health Organization. 2013 Fact sheet: asthma. Geneva: World Health Organization; 2013.
  4. Kim S, Kim J, Kim K, Kim Y, Park Y, Baek S, et al. Healthcare use and prescription patterns associated with adult asthma in Korea: analysis of the NHI claims database. Allergy 2013;68:1435-42. https://doi.org/10.1111/all.12256
  5. Centers for Disease Control and Prevention (CDC). Vital signs: asthma prevalence, disease characteristics, and selfmanagement education: United States, 2001-2009. MMWR Morb Mortal Wkly Rep 2011;60:547-52.
  6. Lethbridge-Cejku M, Vickerie J. Summary health statistics for U.S. adults: national health interview survey, 2003. Vital Health Stat 10 2005;(225):1-161.
  7. Braman SS. The global burden of asthma. Chest 2006;130(1 Suppl):4S-12S. https://doi.org/10.1378/chest.130.1_suppl.4S
  8. Wills-Karp M. Immunologic basis of antigen-induced airway hyperresponsiveness. Annu Rev Immunol 1999;17:255-81. https://doi.org/10.1146/annurev.immunol.17.1.255
  9. Hammad H, Lambrecht BN. Barrier epithelial cells and the control of type 2 immunity. Immunity 2015;43:29-40. https://doi.org/10.1016/j.immuni.2015.07.007
  10. Hirota JA, Knight DA. Human airway epithelial cell innate immunity: relevance to asthma. Curr Opin Immunol 2012;24:740-6. https://doi.org/10.1016/j.coi.2012.08.012
  11. Talbot TR, Hartert TV, Mitchel E, Halasa NB, Arbogast PG, Poehling KA, et al. Asthma as a risk factor for invasive pneumococcal disease. N Engl J Med 2005;352:2082-90. https://doi.org/10.1056/NEJMoa044113
  12. Torres A, Blasi F, Dartois N, Akova M. Which individuals are at increased risk of pneumococcal disease and why? Impact of COPD, asthma, smoking, diabetes, and/or chronic heart disease on community-acquired pneumonia and invasive pneumococcal disease. Thorax 2015;70:984-9. https://doi.org/10.1136/thoraxjnl-2015-206780
  13. Boikos C, Quach C. Risk of invasive pneumococcal disease in children and adults with asthma: a systematic review. Vaccine 2013;31:4820-6. https://doi.org/10.1016/j.vaccine.2013.07.079
  14. Pilishvili T, Zell ER, Farley MM, Schaffner W, Lynfield R, Nyquist AC, et al. Risk factors for invasive pneumococcal disease in children in the era of conjugate vaccine use. Pediatrics 2010;126:e9-17.
  15. Klemets P, Lyytikainen O, Ruutu P, Ollgren J, Kaijalainen T, Leinonen M, et al. Risk of invasive pneumococcal infections among working age adults with asthma. Thorax 2010;65:698-702.
  16. Hsu KK, Shea KM, Stevenson AE, Pelton SI; Members of the Massachusetts Department of Public Health. Underlying conditions in children with invasive pneumococcal disease in the conjugate vaccine era. Pediatr Infect Dis J 2011;30:251-3. https://doi.org/10.1097/INF.0b013e3181fab1cf
  17. Flory JH, Joffe M, Fishman NO, Edelstein PH, Metlay JP. Socioeconomic risk factors for bacteraemic pneumococcal pneumonia in adults. Epidemiol Infect 2009;137:717-26. https://doi.org/10.1017/S0950268808001489
  18. Pelton SI, Weycker D, Farkouh RA, Strutton DR, Shea KM, Edelsberg J. Risk of pneumococcal disease in children with chronic medical conditions in the era of pneumococcal conjugate vaccine. Clin Infect Dis 2014;59:615-23. https://doi.org/10.1093/cid/ciu348
  19. Bjur KA, Lynch RL, Fenta YA, Yoo KH, Jacobson RM, Li X, et al. Assessment of the association between atopic conditions and tympanostomy tube placement in children. Allergy Asthma Proc 2012;33:289-96. https://doi.org/10.2500/aap.2012.33.3529
  20. Hasassri ME, Jackson ER, Ghawi H, Ryoo E, Wi CI, Bartlett MG, et al. Asthma and risk of appendicitis in children: a population-based case-control study. Acad Pediatr 2017;17:205-11. https://doi.org/10.1016/j.acap.2016.09.006
  21. Juhn YJ, Kita H, Yawn BP, Boyce TG, Yoo KH, McGree ME, et al. Increased risk of serious pneumococcal disease in patients with asthma. J Allergy Clin Immunol 2008;122:719-23. https://doi.org/10.1016/j.jaci.2008.07.029
  22. Frey D, Jacobson R, Poland G, Li X, Juhn Y. Assessment of the association between pediatric asthma and Streptococcus pyogenes upper respiratory infection. Allergy Asthma Proc 2009;30:540-5. https://doi.org/10.2500/aap.2009.30.3268
  23. Capili CR, Hettinger A, Rigelman-Hedberg N, Fink L, Boyce T, Lahr B, et al. Increased risk of pertussis in patients with asthma. J Allergy Clin Immunol 2012;129:957-63. https://doi.org/10.1016/j.jaci.2011.11.020
  24. Kwon HJ, Bang DW, Kim EN, Wi CI, Yawn BP, Wollan PC, et al. Asthma as a risk factor for zoster in adults: a population-based case-control study. J Allergy Clin Immunol 2016;137:1406-12. https://doi.org/10.1016/j.jaci.2015.10.032
  25. Kim BS, Mehra S, Yawn B, Grose C, Tarrell R, Lahr B, et al. Increased risk of herpes zoster in children with asthma: a population-based case-control study. J Pediatr 2013;163:816-21. https://doi.org/10.1016/j.jpeds.2013.03.010
  26. Wi CI, Kim BS, Mehra S, Yawn BP, Park MA, Juhn YJ. Risk of herpes zoster in children with asthma. Allergy Asthma Proc 2015;36:372-8. https://doi.org/10.2500/aap.2015.36.3864
  27. Bang DW, Yang HJ, Ryoo E, Al-Hasan MN, Lahr B, Baddour LM, et al. Asthma and risk of non-respiratory tract infection: a population-based case-control study. BMJ Open 2013;3:e003857. https://doi.org/10.1136/bmjopen-2013-003857
  28. Forbes HJ, Bhaskaran K, Thomas SL, Smeeth L, Clayton T, Langan SM. Quantification of risk factors for herpes zoster: population based case-control study. BMJ 2014;348:g2911.
  29. Esteban-Vasallo MD, Dominguez-Berjon MF, Gil-Prieto R, Astray-Mochales J, Gil de Miguel A. Sociodemographic characteristics and chronic medical conditions as risk factors for herpes zoster: a population-based study from primary care in Madrid (Spain). Hum Vaccin Immunother 2014;10:1650-60.
  30. Jackson LA, Benson P, Neuzil KM, Grandjean M, Marino JL. Burden of community-onset Escherichia coli bacteremia in seniors. J Infect Dis 2005;191:1523-9. https://doi.org/10.1086/429344
  31. Yoo KH, Agarwal K, Butterfield M, Jacobson RM, Poland GA, Juhn YJ. Assessment of humoral and cell-mediated immune response to measles-mumps-rubella vaccine viruses among patients with asthma. Allergy Asthma Proc 2010;31:499-506.
  32. Umaretiya PJ, Swanson JB, Kwon HJ, Grose C, Lohse CM, Juhn YJ. Asthma and risk of breakthrough varicella infection in children. Allergy Asthma Proc 2016;37:207-15. https://doi.org/10.2500/aap.2016.37.3951
  33. Yun HD, Knoebel E, Fenta Y, Gabriel SE, Leibson CL, Loftus EV Jr, et al. Asthma and proinflammatory conditions: a population- based retrospective matched cohort study. Mayo Clin Proc 2012;87:953-60. https://doi.org/10.1016/j.mayocp.2012.05.020
  34. Bang DW, Wi CI, Kim EN, Hagan J, Roger V, Manemann S, et al. Asthma status and risk of incident myocardial infarction: a population-based case-control study. J Allergy Clin Immunol Pract 2016;4:917-23. https://doi.org/10.1016/j.jaip.2016.02.018
  35. Rodbard HW, Bays HE, Gavin JR 3rd, Green AJ, Bazata DD, Lewis SJ, et al. Rate and risk predictors for development of self-reported type-2 diabetes mellitus over a 5-year period: the SHIELD study. Int J Clin Pract 2012;66:684-91. https://doi.org/10.1111/j.1742-1241.2012.02952.x
  36. Gulcan E, Bulut I, Toker A, Gulcan A. Evaluation of glucose tolerance status in patients with asthma bronchiale. J Asthma 2009;46:207-9. https://doi.org/10.1080/02770900802627302
  37. Iribarren C, Tolstykh IV, Miller MK, Sobel E, Eisner MD. Adult asthma and risk of coronary heart disease, cerebrovascular disease, and heart failure: a prospective study of 2 matched cohorts. Am J Epidemiol 2012;176:1014-24.
  38. Lee HM, Truong ST, Wong ND. Association of adult-onset asthma with specific cardiovascular conditions. Respir Med 2012;106:948-53. https://doi.org/10.1016/j.rmed.2012.02.017
  39. Chung WS, Shen TC, Lin CL, Chu YH, Hsu WH, Kao CH. Adult asthmatics increase the risk of acute coronary syndrome: a nationwide population-based cohort study. Eur J Intern Med 2014;25:941-5. https://doi.org/10.1016/j.ejim.2014.10.023
  40. Bernstein CN, Wajda A, Blanchard JF. The clustering of other chronic inflammatory diseases in inflammatory bowel disease: a population-based study. Gastroenterology 2005;129:827-36. https://doi.org/10.1053/j.gastro.2005.06.021
  41. Huang HL, Ho SY, Li CH, Chu FY, Ciou LP, Lee HC, et al. Bronchial asthma is associated with increased risk of chronic kidney disease. BMC Pulm Med 2014;14:80. https://doi.org/10.1186/1471-2466-14-80
  42. Su YL, Chou CL, Rau KM, Lee CT. Asthma and risk of prostate cancer: a population-based case-cohort study in Taiwan. Medicine (Baltimore) 2015;94:e1371. https://doi.org/10.1097/MD.0000000000001371
  43. Dolhain RJ, van der Heiden AN, ter Haar NT, Breedveld FC, Miltenburg AM. Shift toward T lymphocytes with a T helper 1 cytokine-secretion profile in the joints of patients with rheumatoid arthritis. Arthritis Rheum 1996;39:1961-9. https://doi.org/10.1002/art.1780391204
  44. Panayi GS, Lanchbury JS, Kingsley GH. The importance of the T cell in initiating and maintaining the chronic synovitis of rheumatoid arthritis. Arthritis Rheum 1992;35:729-35. https://doi.org/10.1002/art.1780350702
  45. Schulze-Koops H, Lipsky PE, Kavanaugh AF, Davis LS. Elevated Th1- or Th0-like cytokine mRNA in peripheral circulation of patients with rheumatoid arthritis: modulation by treatment with anti-ICAM-1 correlates with clinical benefit. J Immunol 1995;155:5029-37.
  46. Modena BD, Tedrow JR, Milosevic J, Bleecker ER, Meyers DA, Wu W, et al. Gene expression in relation to exhaled nitric oxide identifies novel asthma phenotypes with unique biomolecular pathways. Am J Respir Crit Care Med 2014;190:1363-72. https://doi.org/10.1164/rccm.201406-1099OC
  47. Lai NS, Tsai TY, Koo M, Lu MC. Association of rheumatoid arthritis with allergic diseases: a nationwide populationbased cohort study. Allergy Asthma Proc 2015;36:99-103.
  48. Kero J, Gissler M, Hemminki E, Isolauri E. Could TH1 and TH2 diseases coexist? Evaluation of asthma incidence in children with coeliac disease, type 1 diabetes, or rheumatoid arthritis: a register study. J Allergy Clin Immunol 2001;108:781-3. https://doi.org/10.1067/mai.2001.119557
  49. Hemminki K, Li X, Sundquist J, Sundquist K. Subsequent autoimmune or related disease in asthma patients: clustering of diseases or medical care? Ann Epidemiol 2010;20:217-22.
  50. Karatay S, Yildirim K, Ugur M, Senel K, Erdal A, Durmus B, et al. Prevalence of atopic disorders in rheumatic diseases. Mod Rheumatol 2013;23:351-6. https://doi.org/10.3109/s10165-012-0653-6
  51. de Roos AJ, Cooper GS, Alavanja MC, Sandler DP. Personal and family medical history correlates of rheumatoid arthritis. Ann Epidemiol 2008;18:433-9. https://doi.org/10.1016/j.annepidem.2007.12.011
  52. Hassan WU, Keaney NP, Holland CD, Kelly CA. Bronchial reactivity and airflow obstruction in rheumatoid arthritis. Ann Rheum Dis 1994;53:511-4. https://doi.org/10.1136/ard.53.8.511
  53. Provenzano G, Donato G, Brai G, Rinaldi F. Prevalence of allergic respiratory diseases in patients with RA. Ann Rheum Dis 2002;61:281. https://doi.org/10.1136/ard.61.3.281
  54. Dougados M, Soubrier M, Antunez A, Balint P, Balsa A, Buch MH, et al. Prevalence of comorbidities in rheumatoid arthritis and evaluation of their monitoring: results of an international, cross-sectional study (COMORA). Ann Rheum Dis 2014;73:62-8.
  55. Arnett FC, Edworthy SM, Bloch DA, McShane DJ, Fries JF, Cooper NS, et al. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum 1988;31:315-24. https://doi.org/10.1002/art.1780310302
  56. Tirosh A, Mandel D, Mimouni FB, Zimlichman E, Shochat T, Kochba I. Autoimmune diseases in asthma. Ann Intern Med 2006;144:877-83. https://doi.org/10.7326/0003-4819-144-12-200606200-00004
  57. Hilliquin P, Allanore Y, Coste J, Renoux M, Kahan A, Menkes CJ. Reduced incidence and prevalence of atopy in rheumatoid arthritis: results of a case-control study. Rheumatology (Oxford) 2000;39:1020-6.
  58. Hajdarbegovic E, Thio B, Nijsten T. Lower lifetime prevalence of atopy in rheumatoid arthritis. Rheumatol Int 2014;34:847-8. https://doi.org/10.1007/s00296-013-2785-1
  59. Rudwaleit M, Andermann B, Alten R, Sorensen H, Listing J, Zink A, et al. Atopic disorders in ankylosing spondylitis and rheumatoid arthritis. Ann Rheum Dis 2002;61:968-74. https://doi.org/10.1136/ard.61.11.968
  60. Kaptanoglu E, Akkurt I, Sahin O, Hocaoglu S, Nacitarhan V, Elden H, et al. Prevalence of atopy in rheumatoid arthritis in Sivas, Turkey: a prospective clinical study. Rheumatol Int 2004;24:267-71.
  61. Olsson AR, Wingren G, Skogh T, Svernell O, Ernerudh J. Allergic manifestations in patients with rheumatoid arthritis. APMIS 2003;111:940-4. https://doi.org/10.1034/j.1600-0463.2003.1111004.x
  62. Hartung AD, Bohnert A, Hackstein H, Ohly A, Schmidt KL, Bein G. Th2-mediated atopic disease protection in Th1-mediated rheumatoid arthritis. Clin Exp Rheumatol 2003;21:481-4.
  63. O'Driscoll BR, Milburn HJ, Kemeny DM, Cochrane GM, Panayi GS. Atopy and rheumatoid arthritis. Clin Allergy 1985;15:547-53. https://doi.org/10.1111/j.1365-2222.1985.tb02308.x
  64. Yunginger JW, Reed CE, O'Connell EJ, Melton LJ 3rd, O'Fallon WM, Silverstein MD. A community-based study of the epidemiology of asthma: incidence rates, 1964-1983. Am Rev Respir Dis 1992;146:888-94. https://doi.org/10.1164/ajrccm/146.4.888
  65. Lee SH, Lee EB, Shin ES, Lee JE, Cho SH, Min KU, et al. The interaction between allelic variants of CD86 and CD40LG: a common risk factor of allergic asthma and rheumatoid arthritis. Allergy Asthma Immunol Res 2014;6:137-41. https://doi.org/10.4168/aair.2014.6.2.137
  66. Ober C, Hoffjan S. Asthma genetics 2006: the long and winding road to gene discovery. Genes Immun 2006;7:95-100.
  67. Raychaudhuri S, Sandor C, Stahl EA, Freudenberg J, Lee HS, Jia X, et al. Five amino acids in three HLA proteins explain most of the association between MHC and seropositive rheumatoid arthritis. Nat Genet 2012;44:291-6. https://doi.org/10.1038/ng.1076
  68. Viatte S, Plant D, Han B, Fu B, Yarwood A, Thomson W, et al. Association of HLA-DRB1 haplotypes with rheumatoid arthritis severity, mortality, and treatment response. JAMA 2015;313:1645-56. https://doi.org/10.1001/jama.2015.3435
  69. Piipari R, Jaakkola JJ, Jaakkola N, Jaakkola MS. Smoking and asthma in adults. Eur Respir J 2004;24:734-9. https://doi.org/10.1183/09031936.04.00116903
  70. Svendsen AJ, Junker P, Houen G, Kyvik KO, Nielsen C, Skytthe A, et al. Incidence of chronic persistent rheumatoid arthritis and the impact of smoking. Arthritis Care Res (Hoboken) 2016 Jul 7 [Epub]. https://doi.org/10.1002/acr.22987.
  71. Gregersen PK, Silver J, Winchester RJ. The shared epitope hypothesis: an approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis. Arthritis Rheum 1987;30:1205-13. https://doi.org/10.1002/art.1780301102
  72. Anderson R, Meyer PW, Ally MM, Tikly M. Smoking and air pollution as pro-inflammatory triggers for the development of rheumatoid arthritis. Nicotine Tob Res 2016;18:1556-65. https://doi.org/10.1093/ntr/ntw030
  73. Huizinga TW, Amos CI, van der Helm-van Mil AH, Chen W, van Gaalen FA, Jawaheer D, et al. Refining the complex rheumatoid arthritis phenotype based on specificity of the HLA-DRB1 shared epitope for antibodies to citrullinated proteins. Arthritis Rheum 2005;52:3433-8. https://doi.org/10.1002/art.21385
  74. van der Helm-van Mil AH, Verpoort KN, Breedveld FC, Huizinga TW, Toes RE, de Vries RR. The HLA-DRB1 shared epitope alleles are primarily a risk factor for anti-cyclic citrullinated peptide antibodies and are not an independent risk factor for development of rheumatoid arthritis. Arthritis Rheum 2006;54:1117-21. https://doi.org/10.1002/art.21739
  75. Huntington ND, Vosshenrich CA, Di Santo JP. Developmental pathways that generate natural-killer-cell diversity in mice and humans. Nat Rev Immunol 2007;7:703-14. https://doi.org/10.1038/nri2154
  76. Raulet DH. Roles of the NKG2D immunoreceptor and its ligands. Nat Rev Immunol 2003;3:781-90. https://doi.org/10.1038/nri1199
  77. Bauer S, Groh V, Wu J, Steinle A, Phillips JH, Lanier LL, et al. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 1999;285:727-9. https://doi.org/10.1126/science.285.5428.727
  78. Cosman D, Mullberg J, Sutherland CL, Chin W, Armitage R, Fanslow W, et al. ULBPs, novel MHC class I-related molecules, bind to CMV glycoprotein UL16 and stimulate NK cytotoxicity through the NKG2D receptor. Immunity 2001;14:123-33. https://doi.org/10.1016/S1074-7613(01)00095-4
  79. Farhadi N, Lambert L, Triulzi C, Openshaw PJ, Guerra N, Culley FJ. Natural killer cell NKG2D and granzyme B are critical for allergic pulmonary inflammation. J Allergy Clin Immunol 2014;133:827-35.e3. https://doi.org/10.1016/j.jaci.2013.09.048
  80. Timonen T, Stenius-Aarniala B. Natural killer cell activity in asthma. Clin Exp Immunol 1985;59:85-90.
  81. Jira M, Antosova E, Vondra V, Strejcek J, Mazakova H, Prazakova J. Natural killer and interleukin-2 induced cytotoxicity in asthmatics. I. Effect of acute antigen-specific challenge. Allergy 1988;43:294-8. https://doi.org/10.1111/j.1398-9995.1988.tb00903.x
  82. Di Lorenzo G, Esposito Pellitteri M, Drago A, Di Blasi P, Candore G, Balistreri C, et al. Effects of in vitro treatment with fluticasone propionate on natural killer and lymphokineinduced killer activity in asthmatic and healthy individuals. Allergy 2001;56:323-7. https://doi.org/10.1034/j.1398-9995.2001.00879.x
  83. Barnig C, Cernadas M, Dutile S, Liu X, Perrella MA, Kazani S, et al. Lipoxin A4 regulates natural killer cell and type 2 innate lymphoid cell activation in asthma. Sci Transl Med 2013;5:174ra26.
  84. Martens PB, Goronzy JJ, Schaid D, Weyand CM. Expansion of unusual CD4+ T cells in severe rheumatoid arthritis. Arthritis Rheum 1997;40:1106-14. https://doi.org/10.1002/art.1780400615
  85. Markovic-Plese S, Cortese I, Wandinger KP, McFarland HF, Martin R. CD4+CD28- costimulation-independent T cells in multiple sclerosis. J Clin Invest 2001;108:1185-94. https://doi.org/10.1172/JCI200112516
  86. Fasth AE, Dastmalchi M, Rahbar A, Salomonsson S, Pandya JM, Lindroos E, et al. T cell infiltrates in the muscles of patients with dermatomyositis and polymyositis are dominated by CD28null T cells. J Immunol 2009;183:4792-9. https://doi.org/10.4049/jimmunol.0803688
  87. Schmidt D, Goronzy JJ, Weyand CM. CD4+ CD7- CD28- T cells are expanded in rheumatoid arthritis and are characterized by autoreactivity. J Clin Invest 1996;97:2027-37. https://doi.org/10.1172/JCI118638
  88. Groh V, Bruhl A, El-Gabalawy H, Nelson JL, Spies T. Stimulation of T cell autoreactivity by anomalous expression of NKG2D and its MIC ligands in rheumatoid arthritis. Proc Natl Acad Sci U S A 2003;100:9452-7. https://doi.org/10.1073/pnas.1632807100
  89. Pieper J, Johansson S, Snir O, Linton L, Rieck M, Buckner JH, et al. Peripheral and site-specific CD4(+) CD28(null) T cells from rheumatoid arthritis patients show distinct characteristics. Scand J Immunol 2014;79:149-55. https://doi.org/10.1111/sji.12139
  90. Goronzy JJ, Henel G, Sawai H, Singh K, Lee EB, Pryshchep S, et al. Costimulatory pathways in rheumatoid synovitis and T-cell senescence. Ann N Y Acad Sci 2005;1062:182-94.
  91. Korn T, Oukka M, Kuchroo V, Bettelli E. Th17 cells: effector T cells with inflammatory properties. Semin Immunol 2007;19:362-71. https://doi.org/10.1016/j.smim.2007.10.007
  92. Hellings PW, Kasran A, Liu Z, Vandekerckhove P, Wuyts A, Overbergh L, et al. Interleukin-17 orchestrates the granulocyte influx into airways after allergen inhalation in a mouse model of allergic asthma. Am J Respir Cell Mol Biol 2003;28:42-50. https://doi.org/10.1165/rcmb.4832
  93. Oda N, Canelos PB, Essayan DM, Plunkett BA, Myers AC, Huang SK. Interleukin-17F induces pulmonary neutrophilia and amplifies antigen-induced allergic response. Am J Respir Crit Care Med 2005;171:12-8. https://doi.org/10.1164/rccm.200406-778OC
  94. Wakashin H, Hirose K, Maezawa Y, Kagami S, Suto A, Watanabe N, et al. IL-23 and Th17 cells enhance Th2-cell-mediated eosinophilic airway inflammation in mice. Am J Respir Crit Care Med 2008;178:1023-32.
  95. Chen Y, Thai P, Zhao YH, Ho YS, DeSouza MM, Wu R. Stimulation of airway mucin gene expression by interleukin (IL)-17 through IL-6 paracrine/autocrine loop. J Biol Chem 2003;278:17036-43. https://doi.org/10.1074/jbc.M210429200
  96. Finkelman FD, Hogan SP, Hershey GK, Rothenberg ME, Wills-Karp M. Importance of cytokines in murine allergic airway disease and human asthma. J Immunol 2010;184:1663-74.
  97. Kawaguchi M, Onuchic LF, Li XD, Essayan DM, Schroeder J, Xiao HQ, et al. Identification of a novel cytokine, ML-1, and its expression in subjects with asthma. J Immunol 2001;167:4430-5. https://doi.org/10.4049/jimmunol.167.8.4430
  98. Molet S, Hamid Q, Davoine F, Nutku E, Taha R, Page N, et al. IL-17 is increased in asthmatic airways and induces human bronchial fibroblasts to produce cytokines. J Allergy Clin Immunol 2001;108:430-8. https://doi.org/10.1067/mai.2001.117929
  99. Happel KI, Dubin PJ, Zheng M, Ghilardi N, Lockhart C, Quinton LJ, et al. Divergent roles of IL-23 and IL-12 in host defense against Klebsiella pneumoniae. J Exp Med 2005;202:761-9. https://doi.org/10.1084/jem.20050193
  100. Ziolkowska M, Koc A, Luszczykiewicz G, Ksiezopolska-Pietrzak K, Klimczak E, Chwalinska-Sadowska H, et al. High levels of IL-17 in rheumatoid arthritis patients: IL-15 triggers in vitro IL-17 production via cyclosporin A-sensitive mechanism. J Immunol 2000;164:2832-8. https://doi.org/10.4049/jimmunol.164.5.2832
  101. van Hamburg JP, Asmawidjaja PS, Davelaar N, Mus AM, Colin EM, Hazes JM, et al. Th17 cells, but not Th1 cells, from patients with early rheumatoid arthritis are potent inducers of matrix metalloproteinases and proinflammatory cytokines upon synovial fibroblast interaction, including autocrine interleukin-17A production. Arthritis Rheum 2011;63:73-83. https://doi.org/10.1002/art.30093
  102. Yokomizo T, Izumi T, Shimizu T. Leukotriene B4: metabolism and signal transduction. Arch Biochem Biophys 2001;385:231-41. https://doi.org/10.1006/abbi.2000.2168
  103. Luster AD, Tager AM. T-cell trafficking in asthma: lipid mediators grease the way. Nat Rev Immunol 2004;4:711-24. https://doi.org/10.1038/nri1438
  104. Samuelsson B. Leukotrienes: mediators of immediate hypersensitivity reactions and inflammation. Science 1983;220:568-75. https://doi.org/10.1126/science.6301011
  105. Sumimoto H, Takeshige K, Minakami S. Superoxide production of human polymorphonuclear leukocytes stimulated by leukotriene B4. Biochim Biophys Acta 1984;803:271-7. https://doi.org/10.1016/0167-4889(84)90117-4
  106. Bruijnzeel PL, Warringa RA, Kok PT, Kreukniet J. Inhibition of neutrophil and eosinophil induced chemotaxis by nedocromil sodium and sodium cromoglycate. Br J Pharmacol 1990;99:798-802. https://doi.org/10.1111/j.1476-5381.1990.tb13009.x
  107. Huang WW, Garcia-Zepeda EA, Sauty A, Oettgen HC, Rothenberg ME, Luster AD. Molecular and biological characterization of the murine leukotriene B4 receptor expressed on eosinophils. J Exp Med 1998;188:1063-74.
  108. Serhan CN, Prescott SM. The scent of a phagocyte: advances on leukotriene b(4) receptors. J Exp Med 2000;192:F5-8. https://doi.org/10.1084/jem.192.3.F5
  109. Hilberg T, Deigner HP, Moller E, Claus RA, Ruryk A, Glaser D, et al. Transcription in response to physical stress: clues to the molecular mechanisms of exercise-induced asthma. FASEB J 2005;19:1492-4. https://doi.org/10.1096/fj.04-3063fje
  110. O'Driscoll BR, Cromwell O, Kay AB. Sputum leukotrienes in obstructive airways diseases. Clin Exp Immunol 1984;55:397-404.
  111. Wardlaw AJ, Hay H, Cromwell O, Collins JV, Kay AB. Leukotrienes, LTC4 and LTB4, in bronchoalveolar lavage in bronchial asthma and other respiratory diseases. J Allergy Clin Immunol 1989;84:19-26. https://doi.org/10.1016/0091-6749(89)90173-5
  112. Shindo K, Matsumoto Y, Hirai Y, Sumitomo M, Amano T, Miyakawa K, et al. Measurement of leukotriene B4 in arterial blood of asthmatic patients during wheezing attacks. J Intern Med 1990;228:91-6.
  113. Sampson AP, Castling DP, Green CP, Price JF. Persistent increase in plasma and urinary leukotrienes after acute asthma. Arch Dis Child 1995;73:221-5. https://doi.org/10.1136/adc.73.3.221
  114. Wenzel SE, Trudeau JB, Kaminsky DA, Cohn J, Martin RJ, Westcott JY. Effect of 5-lipoxygenase inhibition on bronchoconstriction and airway inflammation in nocturnal asthma. Am J Respir Crit Care Med 1995;152:897-905. https://doi.org/10.1164/ajrccm.152.3.7663802
  115. Csoma Z, Kharitonov SA, Balint B, Bush A, Wilson NM, Barnes PJ. Increased leukotrienes in exhaled breath condensate in childhood asthma. Am J Respir Crit Care Med 2002;166:1345-9. https://doi.org/10.1164/rccm.200203-233OC
  116. Seymour ML, Rak S, Aberg D, Riise GC, Penrose JF, Kanaoka Y, et al. Leukotriene and prostanoid pathway enzymes in bronchial biopsies of seasonal allergic asthmatics. Am J Respir Crit Care Med 2001;164:2051-6. https://doi.org/10.1164/ajrccm.164.11.2008137
  117. Zaitsu M, Hamasaki Y, Matsuo M, Ichimaru T, Fujita I, Ishii E. Leukotriene synthesis is increased by transcriptional upregulation of 5-lipoxygenase, leukotriene A4 hydrolase, and leukotriene C4 synthase in asthmatic children. J Asthma 2003;40:147-54. https://doi.org/10.1081/JAS-120017985
  118. Cuss FM, Dixon CM, Barnes PJ. Effects of inhaled platelet activating factor on pulmonary function and bronchial responsiveness in man. Lancet 1986;2:189-92.
  119. Ishii S, Nagase T, Shindou H, Takizawa H, Ouchi Y, Shimizu T. Platelet-activating factor receptor develops airway hyperresponsiveness independently of airway inflammation in a murine asthma model. J Immunol 2004;172:7095-102.
  120. Bruijnzeel PL, Kok PT, Hamelink ML, Kijne AM, Verhagen J. Platelet-activating factor induces leukotriene C4 synthesis by purified human eosinophils. Prostaglandins 1987;34:205-14. https://doi.org/10.1016/0090-6980(87)90244-9
  121. Sutton BS, Crosslin DR, Shah SH, Nelson SC, Bassil A, Hale AB, et al. Comprehensive genetic analysis of the platelet activating factor acetylhydrolase (PLA2G7) gene and cardiovascular disease in case-control and family datasets. Hum Mol Genet 2008;17:1318-28. https://doi.org/10.1093/hmg/ddn020
  122. Winkler K, Winkelmann BR, Scharnagl H, Hoffmann MM, Grawitz AB, Nauck M, et al. Platelet-activating factor acetylhydrolase activity indicates angiographic coronary artery disease independently of systemic inflammation and other risk factors: the Ludwigshafen Risk and Cardiovascular Health Study. Circulation 2005;111:980-7. https://doi.org/10.1161/01.CIR.0000156457.35971.C8
  123. Stafforini DM, Numao T, Tsodikov A, Vaitkus D, Fukuda T, Watanabe N, et al. Deficiency of platelet-activating factor acetylhydrolase is a severity factor for asthma. J Clin Invest 1999;103:989-97. https://doi.org/10.1172/JCI5574
  124. Ahmadzadeh N, Shingu M, Nobunaga M, Tawara T. Relationship between leukotriene B4 and immunological parameters in rheumatoid synovial fluids. Inflammation 1991;15:497-503. https://doi.org/10.1007/BF00923346
  125. Schrier D, Gilbertsen RB, Lesch M, Fantone J. The role of neutrophils in type II collagen-induced arthritis in rats. Am J Pathol 1984;117:26-9.
  126. Arend WP, Dayer JM. Cytokines and cytokine inhibitors or antagonists in rheumatoid arthritis. Arthritis Rheum 1990;33:305-15. https://doi.org/10.1002/art.1780330302
  127. Cawston TE, Billington C. Metalloproteinases in the rheumatic diseases. J Pathol 1996;180:115-7. https://doi.org/10.1002/(SICI)1096-9896(199610)180:2<115::AID-PATH674>3.0.CO;2-I
  128. Mellor EA, Austen KF, Boyce JA. Cysteinyl leukotrienes and uridine diphosphate induce cytokine generation by human mast cells through an interleukin 4-regulated pathway that is inhibited by leukotriene receptor antagonists. J Exp Med 2002;195:583-92. https://doi.org/10.1084/jem.20020044
  129. Shiota N, Shimoura K, Okunishi H. Pathophysiological role of mast cells in collagen-induced arthritis: study with a cysteinyl leukotriene receptor antagonist, montelukast. Eur J Pharmacol 2006;548:158-66. https://doi.org/10.1016/j.ejphar.2006.07.046
  130. Berry MA, Hargadon B, Shelley M, Parker D, Shaw DE, Green RH, et al. Evidence of a role of tumor necrosis factor alpha in refractory asthma. N Engl J Med 2006;354:697-708. https://doi.org/10.1056/NEJMoa050580
  131. Gagliardo R, Chanez P, Profita M, Bonanno A, Albano GD, Montalbano AM, et al. IkappaB kinase-driven nuclear factor-kappaB activation in patients with asthma and chronic obstructive pulmonary disease. J Allergy Clin Immunol 2011;128:635-45.e1-2. https://doi.org/10.1016/j.jaci.2011.03.045
  132. Howarth PH, Babu KS, Arshad HS, Lau L, Buckley M, McConnell W, et al. Tumour necrosis factor (TNFalpha) as a novel therapeutic target in symptomatic corticosteroid dependent asthma. Thorax 2005;60:1012-8.
  133. Brown SD, Brown LA, Stephenson S, Dodds JC, Douglas SL, Qu H, et al. Characterization of a high TNF-alpha phenotype in children with moderate-to-severe asthma. J Allergy Clin Immunol 2015;135:1651-4. https://doi.org/10.1016/j.jaci.2014.08.054
  134. Moelants EA, Mortier A, Van Damme J, Proost P. Regulation of TNF-alpha with a focus on rheumatoid arthritis. Immunol Cell Biol 2013;91:393-401. https://doi.org/10.1038/icb.2013.15
  135. Nie H, Zheng Y, Li R, Guo TB, He D, Fang L, et al. Phosphorylation of FOXP3 controls regulatory T cell function and is inhibited by TNF-alpha in rheumatoid arthritis. Nat Med 2013;19:322-8. https://doi.org/10.1038/nm.3085
  136. Juhn YJ. Risks for infection in patients with asthma (or other atopic conditions): is asthma more than a chronic airway disease? J Allergy Clin Immunol 2014;134:247-57. https://doi.org/10.1016/j.jaci.2014.04.024
  137. Santillan Salas CF, Mehra S, Pardo Crespo MR, Juhn YJ. Asthma and severity of 2009 novel H1N1 influenza: a population- based case-control study. J Asthma 2013;50:1069-76.
  138. Serrano-Pariente J, Rodrigo G, Fiz JA, Crespo A, Plaza V; High Risk Asthma Research Group. Identification and characterization of near-fatal asthma phenotypes by cluster analysis. Allergy 2015;70:1139-47. https://doi.org/10.1111/all.12654
  139. Sekiya K, Nakatani E, Fukutomi Y, Kaneda H, Iikura M, Yoshida M, et al. Severe or life-threatening asthma exacerbation: patient heterogeneity identified by cluster analysis. Clin Exp Allergy 2016;46:1043-55.
  140. Ranciere F, Nikasinovic L, Bousquet J, Momas I. Onset and persistence of respiratory/allergic symptoms in preschoolers: new insights from the PARIS birth cohort. Allergy 2013;68:1158-67.
  141. Amelink M, de Nijs SB, de Groot JC, van Tilburg PM, van Spiegel PI, Krouwels FH, et al. Three phenotypes of adultonset asthma. Allergy 2013;68:674-80. https://doi.org/10.1111/all.12136
  142. Moore WC, Hastie AT, Li X, Li H, Busse WW, Jarjour NN, et al. Sputum neutrophil counts are associated with more severe asthma phenotypes using cluster analysis. J Allergy Clin Immunol 2014;133:1557-63.e5. https://doi.org/10.1016/j.jaci.2013.10.011
  143. Newby C, Heaney LG, Menzies-Gow A, Niven RM, Mansur A, Bucknall C, et al. Statistical cluster analysis of the British Thoracic Society Severe refractory Asthma Registry: clinical outcomes and phenotype stability. PLoS One 2014;9:e102987.
  144. Moore WC, Meyers DA, Wenzel SE, Teague WG, Li H, Li X, et al. Identification of asthma phenotypes using cluster analysis in the Severe Asthma Research Program. Am J Respir Crit Care Med 2010;181:315-23.
  145. Ortega H, Li H, Suruki R, Albers F, Gordon D, Yancey S. Cluster analysis and characterization of response to mepolizumab: a step closer to personalized medicine for patients with severe asthma. Ann Am Thorac Soc 2014;11:1011-7.
  146. Schatz M, Hsu JW, Zeiger RS, Chen W, Dorenbaum A, Chipps BE, et al. Phenotypes determined by cluster analysis in severe or difficult-to-treat asthma. J Allergy Clin Immunol 2014;133:1549-56. https://doi.org/10.1016/j.jaci.2013.10.006
  147. Sakagami T, Hasegawa T, Koya T, Furukawa T, Kawakami H, Kimura Y, et al. Cluster analysis identifies characteristic phenotypes of asthma with accelerated lung function decline. J Asthma 2014;51:113-8. https://doi.org/10.3109/02770903.2013.852201
  148. Boudier A, Curjuric I, Basagana X, Hazgui H, Anto JM, Bousquet J, et al. Ten-year follow-up of cluster-based asthma phenotypes in adults: a pooled analysis of three cohorts. Am J Respir Crit Care Med 2013;188:550-60. https://doi.org/10.1164/rccm.201301-0156OC
  149. Fitzpatrick AM, Teague WG, Meyers DA, Peters SP, Li X, Li H, et al. Heterogeneity of severe asthma in childhood: confirmation by cluster analysis of children in the National Institutes of Health/National Heart, Lung, and Blood Institute Severe Asthma Research Program. J Allergy Clin Immunol 2011;127:382-9.e1-13. https://doi.org/10.1016/j.jaci.2010.11.015
  150. Jang AS, Kwon HS, Cho YS, Bae YJ, Kim TB, Park JS, et al. Identification of subtypes of refractory asthma in Korean patients by cluster analysis. Lung 2013;191:87-93. https://doi.org/10.1007/s00408-012-9430-8
  151. Sutherland ER, Goleva E, King TS, Lehman E, Stevens AD, Jackson LP, et al. Cluster analysis of obesity and asthma phenotypes. PLoS One 2012;7:e36631. https://doi.org/10.1371/journal.pone.0036631
  152. Haldar P, Pavord ID, Shaw DE, Berry MA, Thomas M, Brightling CE, et al. Cluster analysis and clinical asthma phenotypes. Am J Respir Crit Care Med 2008;178:218-24. https://doi.org/10.1164/rccm.200711-1754OC
  153. Chang TS, Lemanske RF Jr, Mauger DT, Fitzpatrick AM, Sorkness CA, Szefler SJ, et al. Childhood asthma clusters and response to therapy in clinical trials. J Allergy Clin Immunol 2014;133:363-9. https://doi.org/10.1016/j.jaci.2013.09.002
  154. Ortega H, Miller DP, Li H. Characterization of asthma exacerbations in primary care using cluster analysis. J Asthma 2012;49:158-69. https://doi.org/10.3109/02770903.2011.649872
  155. Daly TM, Hill HR. Use and clinical interpretation of pneumococcal antibody measurements in the evaluation of humoral immune function. Clin Vaccine Immunol 2015;22:148-52. https://doi.org/10.1128/CVI.00735-14
  156. Peng YH, Fang HY, Wu BR, Kao CH, Chen HJ, Hsia TC, et al. Adult asthma is associated with an increased risk of herpes zoster: a population-based cohort study. J Asthma 2016 Jul 13 [Epub]. https://doi.org/10.1080/02770903.2016.1211142.
  157. Barnett SB, Nurmagambetov TA. Costs of asthma in the United States: 2002-2007. J Allergy Clin Immunol 2011;127:145-52. https://doi.org/10.1016/j.jaci.2010.10.020
  158. Sung YK, Cho SK, Choi CB, Bae SC. Prevalence and incidence of rheumatoid arthritis in South Korea. Rheumatol Int 2013;33:1525-32. https://doi.org/10.1007/s00296-012-2590-2
  159. Helmick CG, Felson DT, Lawrence RC, Gabriel S, Hirsch R, Kwoh CK, et al. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part I. Arthritis Rheum 2008;58:15-25. https://doi.org/10.1002/art.23177
  160. Kvien TK. Epidemiology and burden of illness of rheumatoid arthritis. Pharmacoeconomics 2004;22(2 Suppl 1):1-12.