Characterization of Bacillus amyloliquefaciens DA12 Showing Potent Antifungal Activity against Mycotoxigenic Fusarium Species

  • Lee, Theresa ;
  • Park, Dami ;
  • Kim, Kihyun ;
  • Lim, Seong Mi ;
  • Yu, Nan Hee ;
  • Kim, Sosoo ;
  • Kim, Hwang-Yong ;
  • Jung, Kyu Seok ;
  • Jang, Ja Yeong ;
  • Park, Jong-Chul ;
  • Ham, Hyeonheui ;
  • Lee, Soohyung ;
  • Hong, Sung Kee ;
  • Kim, Jin-Cheol
  • Received : 2017.06.20
  • Accepted : 2017.09.11
  • Published : 2017.10.01


In an attempt to develop a biological control agent against mycotoxigenic Fusarium species, we isolated Bacillus amyloliquefaciens strain DA12 from soil and explored its antimicrobial activities. DA12 was active against the growth of mycotoxigenic F. asiaticum, F. graminearum, F. proliferatum, and F. verticillioides both in vitro and in planta (maize). Further screening using dual culture extended the activity range of strain DA12 against other fungal pathogens including Botrytis cinerea, Colletotrichum coccodes, Endothia parasitica, Fusarium oxysporum, Raffaelea quercus-mongolicae, and Rhizoctonia solani. The butanol extract of the culture filtrate of B. amyloliquefaciens DA12 highly inhibited the germination of F. graminearum macroconidia with inhibition rate 83% at a concentration of $31.3{\mu}g/ml$ and 100% at a concentration of $250{\mu}g/ml$. The antifungal metabolite from the butanol extract was identified as iturin A by thin layer chromatography-bioautography. In addition, volatile organic compounds produced by DA12 were able to inhibit mycelial growth of various phytopathogenic fungi. The volatile compounds were identified as 2-heptanone, 5-methyl heptanone and 6-methyl heptanone by gas chromatography-mass spectrometry (GC-MS) analysis. These results indicate that the antagonistic activity of Bacillus amyloliquefaciens DA12 was attributable to iturin A and volatile heptanones, and the strain could be used as a biocontrol agent to reduce the development of Fusarium diseases and mycotoxin contamination of crops.


antifungal activity;Bacillus amyloliquefaciens;iturin A;mycotoxin


  1. Arrebola, E., Jacobs, R. and Korsten, L. 2009. Iturin A is the principal inhibitor in the biocontrol activity of Bacillus amyloliquefaciens PPCB004 against postharvest fungal pathogens. J. Appl. Microbiol. 108:386-395.
  2. Cavaglieri, L., Orlando, J., Rodriguez, M. I., Chulze, S. and Etcheverry, M. 2005. Biocontrol of Bacillus subtilis against Fusarium verticillioides in vitro and at the maize root level. Res. Microbiol. 156:748-754.
  3. Cole, L. and Blum, M. S. 1975. Antifungal properties of the insect alarm pheromones, citral, 2-heptanone, and 4-methyl-3-heptanone. Mycologia 67:701-708.
  4. Crane, J. M., Gibson, D. M., Vaughan, R. H. and Bergstrom, G. C. 2013. Iturin levels on wheat spikes linked to biological control of Fusarium head blight by Bacillus amyloliquefaciens. Phytopathology 103:146-155.
  5. Dantigny, P., Bensoussan, M., Vasseur, V., Lebrihi, A., Buchet, C., Ismaili-Alaoui, M., Devlieghere, F. and Roussos, S. 2006. Standardisation of methods for assessing mould germination: a workshop report. Int. J. Food Microbiol. 108:286-291.
  6. Desjardins, A. E. 2006. Fusarium mycotoxins: chemistry, genetics, and biology. The American Phytopathological Society, St. Paul, Minnesota, USA. 260 pp.
  7. Dey, G., Bharti, R., Dhanarajan, G., Das, S., Dey, K. K., Prashanth Kumar, B. N., Sen, R. and Mandal, M. 2015. Marine lipopeptide iturin A inhibits Akt mediated $GSK_3{\beta}$ and $FoxO_3a$ signaling and triggers apoptosis in breast cancer. Sci. Rep. 5:10316.
  8. Eden, P. A., Schimidt, T. M., Blakemore, R. P. and Pace, N. R. 1991. Phylogenetic analysis of Aquaspirillum magnetotacticum using polymerase chain reaction-amplified 16s rRNA-specific DNA. Int. J. Syst. Evol. Microbiol. 41:324-325.
  9. Gong, A.-D., Li, H.-P., Yuan, Q.-S., Song, X. S., Yao, W., He, W.-J., Zhang, J.-B. and Liao, Y.-C. 2015. Antagonistic mechanism of iturin A and plipastatin A from Bacillus amyloliquefaciens S76-3 from wheat spikes against Fusarium graminearum. PLoS One 10:e0116871.
  10. Jard, G., Liboz, T., Mathieu, F., Guyonvarc'h, A. and Lebrihi, A. 2011. Review of mycotoxin reduction in food and feed: from prevention in the field to detoxification by adsorption or transformation. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 28:1590-1609.
  11. Joo, H. J., Kim, H.-Y., Kim, L.-H, Lee, S., Ryu, J.-G. and Lee, T. 2015. A Brevibacillus sp. antagonistic to mycotoxigenic Fusarium spp. Biol. Control 87:64-70.
  12. Jung, B., Park, S.-Y., Lee, Y.-W. and Lee, J. 2013. Biological efficacy of Streptomyces sp. Strain BN1 against the cereal head blight pathogen Fusarium graminearum. Plant Pathol. J. 29:52-58.
  13. Kong, H. G., Kim, J.-C., Choi, G. J., Lee, K. Y., Kim, H. J., Hwang, E. C., Moon, B. J. and Lee, S.-W. 2010. Production of surfactin and iturin by Bacillus licheniformis N1 responsible for plant disease control activity. Plant Pathol. J. 26:170-177.
  14. Matarese, F., Sarrocco, S., Gruber, S., Seidl-Seiboth, V. and Vannacci, G. 2012. Biocontrol of Fusarium head blight: interactions between Trichoderma and mycotoxigenic Fusarium. Microbiology 158:98-106.
  15. Matic, S., Spadaro, D., Garibaldi, A. and Gullino, M. L. 2014. Antagonistic yeasts and thermotherapy as seed treatments to control Fusarium fujikuroi on rice. Biol. Control 73:59-67.
  16. Munimbazi, C. and Bullerman, L. B. 1998. Isolation and partial characterization of antifungal metabolites of Bacillus pumilus. J. Appl. Microbiol. 84:959-968.
  17. Ongena, M. and Jacques, P. 2008. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol. 16:115-125.
  18. Pagnussatt, F. A., Del Ponte, E. M., Garda-Buffon, J. and Badiale-Furlong, E. 2014. Inhibition of Fusarium graminearum growth and mycotoxin production by phenolic extract from Spirulina sp. Pest. Biochem. Physiol. 108:21-26.
  19. Romero, D., de Vicente, A., Rakotoaly, R. H., Dufour, S. E., Veening, J.-W., Arrebola, E., Cazorla, F. M., Kulpers, O. P., Paquot, M. and Perez-Garcia, A. 2007. The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Mol. Plant-Microbe Interact. 20:430-440.
  20. Shioma, M. and Shibamoto, T. 1990. Isolation and identification of headspace volatiles from brewed coffee with an on-column GC/MS method. J. Agric. Food Chem. 38:802-804.
  21. Song, B., Rong, Y.-J., Zhao, M.-X. and Chi, Z.-M. 2013. Antifungal activity of the lipopeptides produced by Bacillus amyloliquefaciens anti-CA against Candida albicans isolated from clinic. Appl. Microbiol. Biotechnol. 97:7141-7150.
  22. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. and Kumar, S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28:2731-2739.
  23. Wachowska, U., Kucharska, K., Jedryczka, M. and Lobik, N. 2013. Microorganisms as biological control agents against Fusarium pathogens in winter wheat. Pol. J. Environ. Stud. 22:591-597.
  24. Wang, J., Liu, J., Chen, H. and Yao, J. 2007. Characterization of Fusarium graminearum inhibitory lipopeptide from Bacillus subtilis IB. Appl. Microbiol. Biotechnol. 76:889-894.
  25. Witt, M. F., Hart, L. P. and Pestka, J. J. 1985. Purification of deoxynivalenol (vomitoxin) by water-saturated silica gel chromatography. J. Agric. Food Chem. 33:745-748.
  26. Xu, H.-M., Rong, Y.-J., Zhao, M.-X., Song, B. and Chi, Z.-M. 2014. Antibacterial activity of the lipopetides produced by Bacillus amyloliquefaciens M1 against multidrug-resistant Vibrio spp. isolated from diseased marine animals. Appl. Microbiol. Biotechnol. 98:127-136.
  27. Xue, A. G., Chen, Y., Voldeng, H. D., Fedak, G., Savard, M. E., Langle, T., Zhang, J. and Harman, G. E. 2014. Concentration and cultivar effects on efficacy of CLO-1 biofungicide in controlling Fusarium head blight of wheat. Biol. Control 73:2-7.
  28. Yoshida, S., Hiradate, S., Tsukamoto, T., Hatakeda, K. and Shirata, A. 2001. Antimicrobial activity of culture filtrate of Bacillus amyloliquefaciens RC-2 isolated from mulberry leaves. Phytopathology 91:181-187.
  29. Yu, G. Y., Sinclair, J. B., Hartman, G. L. and Bertagnolli, B. L. 2002. Production of iturin A by Bacillus amyloliquefaciens suppressing Rhizoctonia solani. Soil Biol. Biochem. 34:955-963.
  30. Zerlouh, H., Romero, D., Garcia-Gutierrez, L., Cazorla, F. M., de Vicente, A. and Perez-Garcia, A. 2011. The iturin-like lipopeptides are essential components in the biological control arsenal of Bacillus subtilis against bacterial diseases of Cucurbits. Mol. Plant-Microbe Interact. 24:1540-1552.
  31. Zhang, X., Li, B., Wang, Y., Guo, Q., Lu, X., Li, S. and Ma, P. 2013. Lipopeptides, a novel protein, and volatile compounds contribute to the antifungal activity of the biocontrol agent Bacillus atrophaeus CAB-1. Appl. Microbiol. Biotechnol. 97:9525-9534.
  32. Zhao, Y., Selvaraj, J. N., Xing, F., Zhou, L., Wang, Y., Song, H., Tan, X., Sun, L., Sangare, L., Folly, Y. M. E. and Liu, Y. 2014. Antagonistic action of Bacillus subtilis strain SG6 on Fusarium graminearum. PLoS One 9:e92486.

Cited by

  1. vol.68, pp.4, 2018,


Grant : Cooperative Research Program for Agricultural Science & Technology Development

Supported by : National Institute of Agricultural Sciences