DOI QR코드

DOI QR Code

Purification and Characterization of a Major Extracellular Chitinase from a Biocontrol Bacterium, Paenibacillus elgii HOA73

Kim, Yong Hwan;Park, Seur Kee;Hur, Jin Young;Kim, Young Cheol

  • Received : 2017.01.29
  • Accepted : 2017.04.11
  • Published : 2017.06.01

Abstract

Chitinase-producing Paenibacillus elgii strain HOA73 has been used to control plant diseases. However, the antimicrobial activity of its extracellular chitinase has not been fully elucidated. The major extracellular chitinase gene (PeChi68) from strain HOA73 was cloned and expressed in Escherichia coli in this study. This gene had an open reading frame of 2,028 bp, encoding a protein of 675 amino acid residues containing a secretion signal peptide, a chitin-binding domain, two fibronectin type III domains, and a catalytic hydrolase domain. The chitinase (PeChi68) purified from recombinant E. coli exhibited a molecular mass of approximately 68 kDa on SDS-PAGE. Biochemical analysis indicated that optimum temperature for the actitvity of purified chitinase was $50^{\circ}C$. However, it was inactivated with time when it was incubated at $40^{\circ}C$ and $50^{\circ}C$. Its optimum activity was found at pH 7, although its activity was stable when incubated between pH 3 and pH 11. Heavy metals inhibited this chitinase. This purified chitinase completely inhibited spore germination of two Cladosporium isolates and partially inhibited germination of Botrytis cinerea spores. However, it had no effect on the spores of a Colletotricum isolate. These results indicate that the extracellular chitinase produced by P. elgii HOA73 might have function in limiting spore germination of certain fungal pathogens.

Keywords

antifungal activity;Botrytis cinerea;extracellular chitinase;heterologous expression;Paenibacillus elgii

References

  1. Akagi, K., Watanabe, J., Hara, M., Kezuka, Y., Chikaishi, E., Yamaguchi, T., Akutsu, H., Nonaka, T., Watanabe, T. and Ikegami, T. 2006. Identification of the substrate interaction region of the chitin-binding domain of Streptomyces griseus chitinase C. J. Biochem. 139:483-493. https://doi.org/10.1093/jb/mvj062
  2. Arora, N. K., Kim, M. J., Kang, S. C. and Maheshwari, D. K. 2007. Role of chitinase and beta-1,3-glucanase activities produced by a fluorescent pseudomonad and in vitro inhibition of Phytophthora capsici and Rhizoctonia solani. Can. J. Microbiol. 53:207-212. https://doi.org/10.1139/w06-119
  3. Banani, H., Spadaro, D., Zhang, D., Matic, S., Garibaldi, A. and Gullino, M. L. 2015. Postharvest application of a novel chitinase cloned from Metschnikowia fructicola and overexpressed in Pichia pastoris to control brown rot of peaches. Int. J. Food Microbiol. 199:54-61. https://doi.org/10.1016/j.ijfoodmicro.2015.01.002
  4. Broadway, R. M., Williams, D. L., Kain, W. C., Harman, G. E., Lorito, M. and Labeda, D. P. 1995. Partial characterization of chitinolytic enzymes from Streptomyces albidoflavus. Lett. Appl. Microbiol. 20:271-276. https://doi.org/10.1111/j.1472-765X.1995.tb00444.x
  5. Brurberg, M. B., Nes, I. F. and Eijsink, V. G. 1996. Comparative studies of chitinases A and B from Serratia marcescens. Microbiology 142:1581-1589. https://doi.org/10.1099/13500872-142-7-1581
  6. Brzezinska, M. S., Jankiewicz, U., Burkowska, A. and Walczak, M. 2014. Chitinolytic microorganisms and their possible application in environmental protection. Curr. Microbiol. 68:71-81. https://doi.org/10.1007/s00284-013-0440-4
  7. Chang, W. T., Chen, C. S. and Wang, S. L. 2003. An antifungal chitinase produced by Bacillus cereus with shrimp and crab shell powder as a carbon source. Curr. Microbiol. 47:102-108. https://doi.org/10.1007/s00284-002-3955-7
  8. Chet, I., Ordentlich, A., Shapira, R. and Oppenheim, A. 1990. Mechanisms of biocontrol of soil-borne plant pathogens by Rhizobacteria. Plant Soil 129:85-92. https://doi.org/10.1007/BF00011694
  9. Dahiya, N., Tewari, R. and Hoondal, G. S. 2006. Biotechnological aspects of chitinolytic enzymes: a review. Appl. Microbiol. Biotechnol. 71:773-782. https://doi.org/10.1007/s00253-005-0183-7
  10. Das, S. N., Dutta, S., Kondreddy, A., Chilukoti, N., Pullabhotla, S. V. S. R. N., Vadlamudi, S. and Podile, A. R. 2010. Plant growth-promoting chitinolytic Paenibacillus elgii responds positively to tobacco root exudates. J. Plant Growth Regul. 29:409-418. https://doi.org/10.1007/s00344-010-9152-1
  11. Di Maro, A., Terracciano, I., Sticco, L., Fiandra, L., Ruocco, M., Corrado, G., Parente, A. and Rao, R. 2010. Purification and characterization of a viral chitinase active against plant pathogens and herbivores from transgenic tobacco. J. Biotechnol. 147:1-6. https://doi.org/10.1016/j.jbiotec.2010.03.005
  12. Ding, R., Li, Y., Qian, C. and Wu, X. 2011. Draft genome sequence of Paenibacillus elgii B69, a strain with broad antimicrobial activity. J. Bacteriol. 193:4537. https://doi.org/10.1128/JB.00406-11
  13. Flach, J., Pilet, P. E. and Jolles, P. 1992. What's new in chitinase research? Experientia 48:701-716. https://doi.org/10.1007/BF02124285
  14. Frankowski, J., Lorito, M., Scala, F., Schmid, R., Berg, G. and Bahl, H. 2001. Purification and properties of two chitinolytic enzymes of Serratia plymuthica HRO-C48. Arch. Microbiol. 176:421-426. https://doi.org/10.1007/s002030100347
  15. Harman, G. E., Hayes, C. K., Lorito, M., Broadway, R. M., Di Poetro, A., Peterbauer, C. and Tronsmo, A. 1993. Chitinolytic enzymes of Trichoderma harzianum: purification of chitobiosidase and endochitinase. Phytopathology 83:313-318. https://doi.org/10.1094/Phyto-83-313
  16. Hashimoto, M., Ikegami, T., Seino, S., Ohuchi, N., Fukada, H., Sugiyama, J., Shirakawa, M. and Watanabe, T. 2000. Expression and characterization of the chitin-binding domain of chitinase A1 from Bacillus circulans WL-12. J. Bacteriol. 182:3045-3054. https://doi.org/10.1128/JB.182.11.3045-3054.2000
  17. Hegedus, D., Erlandson, M., Gillott, C. and Toprak, U. 2009. New insights into peritrophic matrix synthesis, architecture, and function. Annu. Rev. Entomol. 54:285-302. https://doi.org/10.1146/annurev.ento.54.110807.090559
  18. Horn, S. J., Sorbotten, A., Synstad, B., Sikorski, P., Sorlie, M., Varum, K. M. and Eijsink, V. G. 2006. Endo/exo mechanism and processivity of family 18 chitinases produced by Serratia marcescens. FEBS J. 273:491-503. https://doi.org/10.1111/j.1742-4658.2005.05079.x
  19. Itoh, T., Hibi, T., Fujii, Y., Sugimoto, I., Fujiwara, A., Suzuki, F., Iwasaki, Y., Kim, J. K., Taketo, A. and Kimoto, H. 2013. Cooperative degradation of chitin by extracellular and cell surface-expressed chitinases from Paenibacillus sp. strain FPU-7. Appl. Environ. Microbiol. 79:7482-7490. https://doi.org/10.1128/AEM.02483-13
  20. Kamensky, M., Ovadis, M., Chet, I. and Chermin, L. 2003. Soil-borne strain IC14 of Serratia plymuthica with multiple mechanisms of antifungal activity provides biocontrol of Botrytis cinerea and Sclerotinia sclerotiorum diseases. Soil Biol. Biochem. 35:323-331. https://doi.org/10.1016/S0038-0717(02)00283-3
  21. Kim, Y. C., Jung, H., Kim, K. Y. and Park, S. K. 2008. An effective biocontrol bioformulations against Phytophthora blight of pepper using growth mixtures of combined chitinolytic bacteria under different field conditions. Eur. J. Plant Pathol. 120:373-382. https://doi.org/10.1007/s10658-007-9227-4
  22. Kim, Y. C., Lee, J. H., Bae, Y. S., Sohn, B. K. and Park, S. K. 2010. Development of effective environmentally-friendly apporaches to control Alternaria blight and anthracnose diseases of Korean ginseng. Eur. J. Plant Pathol. 127:443-450. https://doi.org/10.1007/s10658-010-9610-4
  23. Kim, Y. C., Leveau, J., McSpadden Gardener, B. B., Pierson, E. A., Pierson, L. S., 3rd. and Ryu, C. M. 2011. The multifactorial basis for plant health promotion by plant-associated bacteria. Appl. Environ. Microbiol. 77:1548-1555. https://doi.org/10.1128/AEM.01867-10
  24. Kim, Y. S., Balaraju, K. and Jeon, Y. 2016. Biological control of apple anthracnose by Paenibacillus polymyxa APEC128, an antagonistic rhizobacterium. Plant Pathol. J. 32:251-259. https://doi.org/10.5423/PPJ.OA.01.2016.0015
  25. Kumar, S. N., Jacob, J., Reshma, U. R., Rajesh, R. O. and Kumar, B. S. 2015. Molecular characterization of forest soil based Paenibacillus elgii and optimization of various culture conditions for its improved antimicrobial activity. Front. Microbiol. 6:1167. https://doi.org/10.3389/fmicb.2015.01167
  26. Lee, K. Y., Heo, K. R., Choi, K. H., Kong, H. G., Nam, J. S., Yi, Y. B., Park, S. H., Lee, S. W. and Moon, B. J. 2009. Characterization of a chitinase gene exhibiting antifungal activity from a biocontrol bacterium Bacillus licheniformis N1. Plant Pathol. J. 25:344-351. https://doi.org/10.5423/PPJ.2009.25.4.344
  27. Lorito, M., Hayes, C. K., Di Pietro, A., Woo, S. L. and Harman, G. E. 1994. Purification, characterization, and synergistic activity of a glucan 1,3-${\beta}$-glucosidase and an N-acetyl-${\beta}$-glucosaminidase from Trichoderma harzianum. Phytopathology 84:398-405. https://doi.org/10.1094/Phyto-84-398
  28. Neung, S., Nguyen, X. H., Naing, K. W., Lee, Y. S. and Kim, K. Y. 2014. Insecticidal potential of Paenibacillus elgii HOA73 and its combination with organic sulfur pesticide on diamondback moth, Plutella xylostella. J. Korean Soc. Appl. Biol. Chem. 57:181-186. https://doi.org/10.1007/s13765-013-4273-4
  29. Nguyen, X. H., Naing, K. W., Lee, Y. S., Jung, W. J., Anees, M. and Kim, K. Y. 2013. Antagonistic potential of Paenibacillus elgii HOA73 against the root-knot nematode, Meloidogyne incognita. Nematology 15:991-1000. https://doi.org/10.1163/15685411-00002737
  30. Nguyen, X. H., Naing, K. W., Lee, Y. S., Moon, J. H., Lee, J. H. and Kim, K. Y. 2015. Isolation and characteristics of protocatechuic acid from Paenibacillus elgii HOA73 against Botrytis cinerea on strawberry fruits. J. Basic Microbiol. 55:625-634. https://doi.org/10.1002/jobm.201400041
  31. Park, S. K., Kim, C. W., Kim, H., Jung, J. S. and Harman, G. E. 2007. Cloning and high-level production of a chitinase from Chromobacterium sp. and the role of conserved or nonconserved residues on its catalytic activity. Appl. Microbiol. Biotechnol. 74:791-804. https://doi.org/10.1007/s00253-006-0614-0
  32. Park, S. K., Lee, M. C. and Harman, G. E. 2005. The biocontrol activity of Chromobacterium sp. strain C61 against Rhizoctonia solani depends on the productive ability of chitinase. Plant Pathol. J. 21:275-282. https://doi.org/10.5423/PPJ.2005.21.3.275
  33. Qian, C. D., Liu, T. Z., Zhou, S. L., Ding, R., Zhao, W. P., Li, O. and Wu, X. C. 2012. Identification and functional analysis of gene cluster involvement in biosynthesis of the cyclic lipopeptide antibiotic pelgipeptin produced by Paenibacillus elgii. BMC Microbiol. 12:197. https://doi.org/10.1186/1471-2180-12-197
  34. Reyes-Ramirez, A., Escudero-Abaraca, B. I., Aguilar-Uscanga, G., Hayward-Jones, P. M. and Barboza-Corona, J. E. 2004. Antifungal activity of Bacillus thuringiensis chitinase and its potential for the biocontrol of phytopathogenic fungi in soybean seeds. J. Food Sci. 69:M131-M134.
  35. Sang, M. K., Kim, E. N., Han, G. D., Kwack, M. S., Jeun, Y. C. and Kim, K. D. 2014. Priming-mediated systemic resistance in cucumber induced by Pseudomonas azotoformans GCB19 and Paenibacillus elgii MM-B22 against Colletotrichum orbiculare. Phytopathology 104:834-842. https://doi.org/10.1094/PHYTO-11-13-0305-R
  36. Suzuki, K., Sugawara, N., Suzuki, M., Uchiyama, T., Katouno, F., Nikaidou, N. and Watanabe, T. 2002. Chitinases A, B, and C1 of Serratia marcescens 2170 produced by recombinant Escherichia coli: enzymatic properties and synergism on chitin degradation. Biosci. Biotechnol. Biochem. 66:1075-1083. https://doi.org/10.1271/bbb.66.1075
  37. Teng, Y., Zhao, W., Qian, C., Li, O., Zhu, L. and Wu, X. 2012. Gene cluster analysis for the biosynthesis of elgicins, novel lantibiotics produced by Paenibacillus elgii B69. BMC Microbiol. 12:45. https://doi.org/10.1186/1471-2180-12-45
  38. Watanabe, T., Ito, Y., Yamada, T., Hashimoto, M., Sekine, S. and Tanaka, H. 1994. The roles of the C-terminal domain and type III domains of chitinase A1 from Bacillus circulans WL-12 in chitin degradation. J. Bacteriol. 176:4465-4472. https://doi.org/10.1128/jb.176.15.4465-4472.1994
  39. Watanabe, T., Oyanagi, W., Suzuki, K. and Tanaka, H. 1990. Chitinase system of Bacillus circulans WL-12 and importance of chitinase A1 in chitin degradation. J. Bacteriol. 172:4017-4022. https://doi.org/10.1128/jb.172.7.4017-4022.1990
  40. Wen, Y., Wu, X., Teng, Y., Qian, C., Zhan, Z., Zhao, Y. and Li, O. 2011. Identification and analysis of the gene cluster involved in biosynthesis of paenibactin, a catecholate siderophore produced by Paenibacillus elgii B69. Environ. Microbiol. 13:2726-2737. https://doi.org/10.1111/j.1462-2920.2011.02542.x
  41. Yan, Q. and Fong, S. S. 2015. Bacterial chitinase: nature and perspectives for sustainable bioproduction. Bioresour. Bioprocess. 2:31. https://doi.org/10.1186/s40643-015-0057-5
  42. Yu, G., Xie, L. Q., Li, J. T., Sun, X. H., Zhang, H., Du, Q., Li, Q. Y., Zhang, S. H. and Pan, H. Y. 2015. Isolation, partial characterization, and cloning of an extracellular chitinase from the entomopathogenic fungus Verticillium lecanii. Genet. Mol. Res. 14:2275-2289. https://doi.org/10.4238/2015.March.27.13

Cited by

  1. Reclamation of Marine Chitinous Materials for Chitosanase Production via Microbial Conversion by Paenibacillus macerans vol.16, pp.11, 2018, https://doi.org/10.3390/md16110429
  2. by Solid-State Fermentation Using Sugarcane Bagasse as Substrate vol.14, pp.4, 2018, https://doi.org/10.1089/ind.2017.0031

Acknowledgement

Supported by : Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries