DOI QR코드

DOI QR Code

Design of the Wideband Microwave Absorber for X-band Applications

X-대역 응용을 위한 광대역 전파 흡수체 설계

  • Hong, Young-Taek (Department of Electronics and Computer Engineering, Hanyang University) ;
  • Jeoung, Gu-Ho (Department of Electronics and Computer Engineering, Hanyang University) ;
  • Choi, Jaehoon (Department of Electronics and Computer Engineering, Hanyang University)
  • 홍영택 (한양대학교 전자컴퓨터통신공학과) ;
  • 정구호 (한양대학교 전자컴퓨터통신공학과) ;
  • 최재훈 (한양대학교 전자컴퓨터통신공학과)
  • Received : 2017.08.01
  • Accepted : 2017.09.08
  • Published : 2017.09.30

Abstract

In this paper, a wideband microwave absorber for X-band(8~12 GHz) applications is proposed. The structure of the proposed absorber unit cell consists of a resonator with a slot and slit, a backing ground plate, and a Taconic RF-30(${\varepsilon}_r=3$, $tan{\delta}=0.0014$) substrate with a dimension of $8.5{\times}8.5{\times}0.5mm^3$. The proposed absorber has a dual resonance at 9.83 and 10.37 GHz. To demonstrate the operating principle of the proposed absorber structure at each resonance frequency, the simulated current distributions on the unit cell are analyzed. To verify the performance of the proposed absorber, a prototype absorber was fabricated with a planar array of $20{\times}20$ unit cells. The measured results exhibit two absorptivity peaks stronger than 99 % and full-width at half-maximum(FWHM) bandwidth of 1.1 GHz(9.51~10.61 GHz).

본 논문에서는 X-대역(8~12 GHz) 응용을 위한 광대역 전파 흡수체를 제안하였다. 제안된 흡수체 unit cell 구조는 슬롯과 슬릿을 포함하는 공진기, 뒷면의 도체판, $8.5{\times}8.5{\times}0.5mm^3$의 크기를 갖는 Taconic RF-30(${\varepsilon}_r=3$, $tan{\delta}=0.0014$) 기판으로 이루어져 있다. 제안된 흡수체는 9.83 GHz와 10.37 GHz에서 공진이 발생하는 이중 공진 특성을 갖는다. 제안된 흡수체 구조의 동작 원리를 검증하기 위하여 각각의 공진주파수에서 unit cell 구조의 표면 전류 분포를 분석하였다. 제안된 흡수체의 성능을 확인하기 위하여 $20{\times}20$개의 unit cell 배열 시제품을 제작하였다. 측정 결과, 최대 흡수율을 갖는 지점에서 모두 99 % 이상의 흡수율이 측정되었으며, 측정된 full-width at half-maximum(FWHM) 대역폭은 1.1 GHz(9.51~10.61 GHz)이다.

Keywords

Acknowledgement

Supported by : 방위사업청, 국방과학연구소

References

  1. A. Namai, S. Sakurai, M. Nakajima, T. Suemoto, K. Matsumoto, M. Goto, S. Sasaki, and S. I. Ohkoshi, "Synthesis of an electromagnetic wave absorber for high-speed wireess communication", J. Am. Chem. Soc., vol. 131, no. 3, pp. 1170-1173, 2009. https://doi.org/10.1021/ja807943v
  2. T. Liu, X. Cao, J. Gao, Q. Zheng, W. Li, and H. Yang, "RCS reduction of waveguide slot antenna with metamaterial absorber", IEEE Trans. Antennas Propag., vol. 61, no. 3, pp. 1479-1484, Mar. 2013. https://doi.org/10.1109/TAP.2012.2231922
  3. A. Fallahi, A. Yahaghi, H. R. Benedickter, H. Abiri, M. Shahabadi, and C. Hafner, "Thin wideband radar absorbers", IEEE Trans. Antennas Propag., vol. 58, no. 12, pp. 4051-4058, Dec. 2010. https://doi.org/10.1109/TAP.2010.2078482
  4. S. Bhattacharyya, S. Ghosh, and K. V. Srivastava, "Bandwidth-enhanced metamaterial absorber using electric fielddriven LC resonator for airborne radar applications", Microw. Opt. Technol. Lett., vol. 55, no. 9, pp. 2131-2137, Feb. 2013. https://doi.org/10.1002/mop.27786
  5. B. K. Chung, H. T. Chuah, "Modeling of RF absorber for application in the design of anechoic chamber", Prog. Electromagn. Res. 43, pp. 273-285, 2003. https://doi.org/10.2528/PIER03052601
  6. J. Lee, B. Lee, "Design of thin RC absorbers using a silver nanowire resistive screen", Journal of Electromagnetic Engineering and Science, vol. 16, no. 2, pp. 106-111, Apr. 2016. https://doi.org/10.5515/JKIEES.2016.16.2.106
  7. M. Park, J. Choi, and S. Kim, "Wide bandwidth pyramidal absorbers of granular ferrite and carbonyl iron powders", IEEE Trans. on Mag., vol. 36, no. 5, pp. 3272-3274, Sep. 2000. https://doi.org/10.1109/20.908766
  8. T. Nakamura, T. Miyamoto, and Y. Yamada, "Complex permeability spectra of polycrystalline Li-Zn ferrite and application to EM-wave absorber", J. Magn. Magn. Mater., vol 37, no 11, pp. 340-347, Jun. 2002.
  9. L. Sun, B. Sun, J. Yuan, and Wending Tang, "Complex permittivity and microwave absorption properties of a composite dielectric absorber", J. Magn. Magn. Mater., vol. 37, no. 11, pp. 2148-2154, Nov. 2005.
  10. J. Tak, Y. Jin, and J. Choi, "A dual-band metamaterial microwave absorber", Microw. Opt. Technol. Lett, vol. 58, no. 9, pp. 2052-2057, Sep. 2016 https://doi.org/10.1002/mop.29977
  11. S. Ghosh, S. Bhattacharyya, and K. Srivastava, "Bandwidth-enhancement of an ultra thin polarization insentive metamaterial absorber", Microw. Opt. Technol. Lett., vol. 56, no. 2, pp. 350-355, Feb. 2014. https://doi.org/10.1002/mop.28122
  12. S. Bhattacharyya, K. Srivastava, "Triple band polarization-independent ultra-thin metamaterial absorber using electric field-driven LC resonator", J. Appl. Phys., vol 114, no. 9, pp. 508-515, Jul. 1995.
  13. Y. Liu, F. D. Flaviis, and N. G. Alexopoulos, "A thin X-band microwave absorber using a center shorted spiral medium", IEEE Antennas Wireless Propag. Lett., vol. 8, pp. 271-274, 2009. https://doi.org/10.1109/LAWP.2008.2010531
  14. HFSS : High Frequency Structure Simulator based on the Finite Element Method, v.15.0.0, ANSYS Inc.