DOI QR코드

DOI QR Code

임베디드 소프트웨어 유지보수 노력의 영향요인 연구 : 반도체 웨이퍼 가공라인 사례를 중심으로

Factors Influencing the Efforts for Embedded Software Maintenance : A Case from Semiconductor Wafer Processing Line

  • 조남형 (성균관대학교 경영연구소) ;
  • 김치린 (어플라이드 머티어리얼즈 코리아) ;
  • 김미량 (성균관대학교 컴퓨터교육과)
  • 투고 : 2017.07.21
  • 심사 : 2017.09.20
  • 발행 : 2017.09.28

초록

반도체 산업은 임베디드 소프트웨어를 통해 운영 통제되는 자동화설비를 통해 첨단상품을 생산한다. 반도체를 생산하는 로봇과 각종 설비의 임베디드 소프트웨어 유지보수는 제품의 품질과 신뢰성 제고를 위한 필수적인 과정으로 반도체 장비의 라이프 사이클을 고려할 때 상당히 높은 비중을 차지하는 활동영역이다. 그러나 이 분야에 대한 학술적 관심사는 그리 높지 않는데, 본 연구에서는 반도체 웨이퍼 생산장비를 구동하는 소프트웨어 관련 문제로 보고된 사건을 대상으로 502개의 데이터를 무작위 추출방식으로 수집하여 임베디드 소프트웨어의 유지보수 노력에 영향을 미치는 요인들을 분석해 보았다. 결론으로 실무적인 시사점도 제시하였다.

키워드

반도체;임베디드 소프트웨어;회귀분석;소프트웨어 유지보수;웨이퍼 가공

참고문헌

  1. S. Kang, H. Yang, "Quality Evaluation of Criterion Construction for Open Source Software." Journal of Digital Convergence, Vol. 11, No. 2, pp. 323-330, 2013.
  2. J. Hong, "Security Policy Issue in Application Software Development Process of Smart Phone Environment." Journal of Digital Convergence, Vol. 10, No. 10, pp. 319-324, 2012.
  3. A. Kim, J. Roh, S. Rhee, "Implementation of an Expert System for COTS Fault Diagnosis." Journal of Digital Convergence, Vol. 11, No. 1, pp. 275-281, 2013. https://doi.org/10.14400/JDPM.2013.11.12.275
  4. Y. Lee, "Review of the Embedded Software status of Korea for Semiconductor", Communications of the Korean Institute of Information Scientists and Engineer, Vol. 28, No. 10, pp. 10-15, 2010
  5. H. Kwon, "Plan for training the competent human resources on Embedded SW", Magazine of the IEEK, Vol. 39, No. 1, pp. 49-53, 2012.
  6. H. Yoo, J. Lee, H. Kim, "An analysis on the Secotral Innovation System of Embedded Software industry in Korea." Proceedings of Symposium of the Korean Institute of communications and Information Sciences, pp. 47-48, 2012. 6.
  7. H. Yang, J. Moon, M. Jeong, "Analysis of Embedded SW Technology And Strategy of Industrial Foundation Competence." The Journal of The Korean Institute of Communication Sciences, Vol. 35, No. 8, pp. 1232-1240, 2010.
  8. Sang-Yong Kim and Byeong-Cheol Lee, Semiconductor CMOS manufacturing technique, Seoul: Iljinsa, 2016.
  9. K. Petersen, "A palette of lean indicators to detect waste in software maintenance: A case study", In: Proceedings of 13th International Conference on Agile Processes in Software Engineering and Extreme Programming, pp. 108-122, 2012.
  10. K. Petersen, "Is lean agile and agile lean? A comparison between two software development paradigms", In: Dogru, A. H. and Bicer, V. (ed). Modern Software Engineering Concepts and Practices: Advanced Approaches, pp. 19-46, 2010.
  11. O. Alam, B. Adams, and A. E. Hassan, "Measuring the progress of projects using the time dependence of code changes", In: Proceedings of 2009 IEEE International Conference on Software Maintenance, pp. 329-338, 2009.
  12. J. Henry, R. Blasewitz, and D. Kettinger, "Defining and implementing a measurement-based software maintenance process." Journal of Software Maintenance and Evolution, Vol. 8, No. 2, pp. 79-100, 1996. https://doi.org/10.1002/(SICI)1096-908X(199603)8:2<79::AID-SMR123>3.0.CO;2-K
  13. J. Elmar, "Software maintenance research that is empirically valid and useful in practice." it-Information Technology, Vol. 58, No. 3, pp. 145-149, 2016.
  14. H. Zhang, L. Gong, and S. Versteeg, "Predicting bug-fixing time: An empirical study of commercial software projects", In: Proceedings of the 35th International Conference on Software Engineering (ICSE), pp. 1042-1051, 2013.
  15. S. Kim, and Jr ,E. J. Whitehead, "How Long Did It Take to Fix Bugs?", In: Proceedings of the 2006 International Workshop on Mining Software Repositories, pp. 173-174, 2006.
  16. E. Giger, M., Pinzger, and H. Gall, "Predicting the Fix Time of Bugs", In: Proceedings of the 2nd International Workshop on Recommendation Systems for Software Engineering, pp.52-56, 2010.
  17. K. Petersen and C. Wohlin, "Software Process Improvement through the Lean Measurement (SPI-LEAM) Method." Journal of Systems and Software, Vol. 8, No. 7, pp. 1275-1287, 2010.
  18. R. Blundell, R. Griffith, and J. Van Reenen, "Dynamic Count Data Models of Technoical Innovation." The Economic Journal, Vol. 105, No. 429, pp. 333-344, 1995. https://doi.org/10.2307/2235494
  19. W. Greene, "Functional forms for the negative binomial model for count data." Economics Letters, Vol. 99, No. 3, pp. 585-590, 2008. https://doi.org/10.1016/j.econlet.2007.10.015
  20. R. Baptista, and P. Swann, "Do firms in clusters innovate more?" Research Policy, Vol. 27, No. 5, pp. 525-540, 1998. https://doi.org/10.1016/S0048-7333(98)00065-1
  21. P. Jong and G. Z. Heller, Generalized linear models for insurance data. New york: Cambridge University Press, 2008.
  22. J. M. Hilbe, Negative binomial regression. 2nd ed. Cambridge, UK: Cambridge University Press, 2011.