Factors Influencing the Efforts for Embedded Software Maintenance : A Case from Semiconductor Wafer Processing Line

임베디드 소프트웨어 유지보수 노력의 영향요인 연구 : 반도체 웨이퍼 가공라인 사례를 중심으로

  • 조남형 (성균관대학교 경영연구소) ;
  • 김치린 (어플라이드 머티어리얼즈 코리아) ;
  • 김미량 (성균관대학교 컴퓨터교육과)
  • Received : 2017.07.21
  • Accepted : 2017.09.20
  • Published : 2017.09.28


The semiconductor industry develops and maintains software embedded in computer-controlled tools and facilities, to process and manufacture high-tech products. Upgrading embedded softwares for semiconductor processing robots and machinery is one of the basic activities that must be performed in order to maintain product quality and integrity. Maintenance and enhancement of embedded software consume a major portion of the total life cycle cost of a system. However, the area has been given little attention in the literature. 502 maintenance and enhancement cases, related to embedded softwares in wafer processing machines, were selected at random for analysis. Practical implications are also discussed.


Semiconductor;Embedded software;Regression;Software maintenance;Wafer processing


  1. S. Kang, H. Yang, "Quality Evaluation of Criterion Construction for Open Source Software." Journal of Digital Convergence, Vol. 11, No. 2, pp. 323-330, 2013.
  2. J. Hong, "Security Policy Issue in Application Software Development Process of Smart Phone Environment." Journal of Digital Convergence, Vol. 10, No. 10, pp. 319-324, 2012.
  3. A. Kim, J. Roh, S. Rhee, "Implementation of an Expert System for COTS Fault Diagnosis." Journal of Digital Convergence, Vol. 11, No. 1, pp. 275-281, 2013.
  4. Y. Lee, "Review of the Embedded Software status of Korea for Semiconductor", Communications of the Korean Institute of Information Scientists and Engineer, Vol. 28, No. 10, pp. 10-15, 2010
  5. H. Kwon, "Plan for training the competent human resources on Embedded SW", Magazine of the IEEK, Vol. 39, No. 1, pp. 49-53, 2012.
  6. H. Yoo, J. Lee, H. Kim, "An analysis on the Secotral Innovation System of Embedded Software industry in Korea." Proceedings of Symposium of the Korean Institute of communications and Information Sciences, pp. 47-48, 2012. 6.
  7. H. Yang, J. Moon, M. Jeong, "Analysis of Embedded SW Technology And Strategy of Industrial Foundation Competence." The Journal of The Korean Institute of Communication Sciences, Vol. 35, No. 8, pp. 1232-1240, 2010.
  8. Sang-Yong Kim and Byeong-Cheol Lee, Semiconductor CMOS manufacturing technique, Seoul: Iljinsa, 2016.
  9. K. Petersen, "A palette of lean indicators to detect waste in software maintenance: A case study", In: Proceedings of 13th International Conference on Agile Processes in Software Engineering and Extreme Programming, pp. 108-122, 2012.
  10. K. Petersen, "Is lean agile and agile lean? A comparison between two software development paradigms", In: Dogru, A. H. and Bicer, V. (ed). Modern Software Engineering Concepts and Practices: Advanced Approaches, pp. 19-46, 2010.
  11. O. Alam, B. Adams, and A. E. Hassan, "Measuring the progress of projects using the time dependence of code changes", In: Proceedings of 2009 IEEE International Conference on Software Maintenance, pp. 329-338, 2009.
  12. J. Henry, R. Blasewitz, and D. Kettinger, "Defining and implementing a measurement-based software maintenance process." Journal of Software Maintenance and Evolution, Vol. 8, No. 2, pp. 79-100, 1996.<79::AID-SMR123>3.0.CO;2-K
  13. J. Elmar, "Software maintenance research that is empirically valid and useful in practice." it-Information Technology, Vol. 58, No. 3, pp. 145-149, 2016.
  14. H. Zhang, L. Gong, and S. Versteeg, "Predicting bug-fixing time: An empirical study of commercial software projects", In: Proceedings of the 35th International Conference on Software Engineering (ICSE), pp. 1042-1051, 2013.
  15. S. Kim, and Jr ,E. J. Whitehead, "How Long Did It Take to Fix Bugs?", In: Proceedings of the 2006 International Workshop on Mining Software Repositories, pp. 173-174, 2006.
  16. E. Giger, M., Pinzger, and H. Gall, "Predicting the Fix Time of Bugs", In: Proceedings of the 2nd International Workshop on Recommendation Systems for Software Engineering, pp.52-56, 2010.
  17. K. Petersen and C. Wohlin, "Software Process Improvement through the Lean Measurement (SPI-LEAM) Method." Journal of Systems and Software, Vol. 8, No. 7, pp. 1275-1287, 2010.
  18. R. Blundell, R. Griffith, and J. Van Reenen, "Dynamic Count Data Models of Technoical Innovation." The Economic Journal, Vol. 105, No. 429, pp. 333-344, 1995.
  19. W. Greene, "Functional forms for the negative binomial model for count data." Economics Letters, Vol. 99, No. 3, pp. 585-590, 2008.
  20. R. Baptista, and P. Swann, "Do firms in clusters innovate more?" Research Policy, Vol. 27, No. 5, pp. 525-540, 1998.
  21. P. Jong and G. Z. Heller, Generalized linear models for insurance data. New york: Cambridge University Press, 2008.
  22. J. M. Hilbe, Negative binomial regression. 2nd ed. Cambridge, UK: Cambridge University Press, 2011.