DOI QR코드

DOI QR Code

실리콘 직접 본딩에 의한 P-N 접합의 특성에 관한 연구

A Study on Characterization of P-N Junction Using Silicon Direct Bonding

  • 정원채 (경기대학교 전자공학과)
  • Jung, Won-Chae (Department of Electronic Engineering, Kyonggi University)
  • 투고 : 2017.06.13
  • 심사 : 2017.08.28
  • 발행 : 2017.10.01

초록

This study investigated the various physical and electrical effects of silicon direct bonding. Direct bonding means the joining of two wafers together without an intermediate layer. If the surfaces are flat, and made clean and smooth using HF treatment to remove the native oxide layer, they can stick together when brought into contact and form a weak bond depending on the physical forces at room temperature. An IR camera and acoustic systems were used to analyze the voids and bonding conditions in an interface layer during bonding experiments. The I-V and C-V characteristics are also reported herein. The capacitance values for a range of frequencies were measured using a LCR meter. Direct wafer bonding of silicon is a simple method to fuse two wafers together; however, it is difficult to achieve perfect bonding of the two wafers. The direct bonding technology can be used for MEMS and other applications in three-dimensional integrated circuits and special devices.

과제정보

연구 과제 주관 기관 : 경기대학교

참고문헌

  1. E. H. Klaassen, K. Petersen, J. M. Noworolski, J. Logan, N. I. Maluf, J. Brown, C. Storment, W. McCulley, G.T.A. Kovacs, Sens. Actuators, A, 52, 132 (1996). [DOI: https://doi.org/10.1016/0924-4247(96)80138-5] https://doi.org/10.1016/0924-4247(96)80138-5
  2. M. A. Schmidt, Proc. IEEE, 86, 1575 (1998). [DOI: https://doi.org/10.1109/5.704262] https://doi.org/10.1109/5.704262
  3. G. Krauter, A. Schumacher, and U. Gosele, Sens. Actuators, A, 70, 271 (1998). [DOI: https://doi.org/10.1016/S0924-4247(98)00102-2] https://doi.org/10.1016/S0924-4247(98)00102-2
  4. D. Resnik, D. Vrtacnik, U. Aljancic, and S. Amon, Sens. Actuators, A, 80, 68 (2000). [DOI: https://doi.org/10.1016/S0924-4247(99)00299-X] https://doi.org/10.1016/S0924-4247(99)00299-X
  5. Z. Liu and D. L. DeVoe, Robot Cim-Int Manuf., 17, 131 (2001). [DOI: https://doi.org/10.1016/S0736-5845(00)00046-6] https://doi.org/10.1016/S0736-5845(00)00046-6
  6. L. Y. Huang, K. L. Ho, and C. T. Hu, Appl. Surf. Sci., 257, 7693 (2011). [DOI: https://doi.org/10.1016/j.apsusc.2011.04.011] https://doi.org/10.1016/j.apsusc.2011.04.011
  7. X. Zhou, L. Che, S. Liang, Y. Lin, X. Li, and Y. Wang, Microelectron. Eng., 131, 51 (2015). [DOI: https://doi.org/10.1016/j.mee.2014.10.005] https://doi.org/10.1016/j.mee.2014.10.005
  8. B. Landgraf Sr., R. Günther Sr., G. Vacanti, N. Barriere, M. Vervest, D. Girou, A. Yanson, and M. Collon Sr., ECS Trans., 75, 331 (2016). [DOI: https://doi.org/10.1149/07509.0331ecst] https://doi.org/10.1149/07509.0331ecst
  9. K. Knoerzer, P. Juliano, S. Gladman, C. Versteeg, and P. J. Fryer, Am. Inst. Chem. Eng., 53, 2996 (2007). [DOI: https://doi.org/10.1002/aic.11301] https://doi.org/10.1002/aic.11301
  10. H. H. Yu and Z. Suo, J. Mech. Phys. Solids, 46, 829 (1998). [DOI: https://doi.org/10.1016/S0022-5096(97)00100-2] https://doi.org/10.1016/S0022-5096(97)00100-2
  11. K. T. Turner, S. M. Spearing, W. A. Baylies, M. Robinson, and R. Smythe, IEEE Trans. Semicond. Manuf., 18, 289 (2005). [DOI: https://doi.org/10.1109/TSM.2005.845009] https://doi.org/10.1109/TSM.2005.845009
  12. D. V. Kubair and S. M. Spearing, J. Phys. D: Appl. Phys., 40, 3070 (2007). [DOI: https://doi.org/10.1088/0022-3727/40/10/010] https://doi.org/10.1088/0022-3727/40/10/010
  13. G. Liao, T. Shi, X. Lin, and Z. Ma, Sens. Actuators, A, 158, 335 (2010). [DOI: https://doi.org/10.1016/j.sna.2010.01.025] https://doi.org/10.1016/j.sna.2010.01.025
  14. S. Bengtsson and O. Engstrom, J. Appl. Phys., 66, 1231 (1989). [DOI: https://doi.org/10.1063/1.343469] https://doi.org/10.1063/1.343469