miR-23a Regulates Cardiomyocyte Apoptosis by Targeting Manganese Superoxide Dismutase

  • Long, Bo (Central Research Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College) ;
  • Gan, Tian-Yi (State Key Laboratory of Cardiovascular Disease, Heart Failure center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College) ;
  • Zhang, Rong-Cheng (State Key Laboratory of Cardiovascular Disease, Heart Failure center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College) ;
  • Zhang, Yu-Hui (State Key Laboratory of Cardiovascular Disease, Heart Failure center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College)
  • Received : 2017.01.18
  • Accepted : 2017.06.25
  • Published : 2017.08.31


Cardiomyocyte apoptosis is initiated by various cellular insults and accumulated cardiomyocyte apoptosis leads to the pathogenesis of heart failure. Excessive reactive oxygen species (ROS) provoke apoptotic cascades. Manganese superoxide dismutase (MnSOD) is an important antioxidant enzyme that converts cellular ROS into harmless products. In this study, we demonstrate that MnSOD is down-regulated upon hydrogen peroxide treatment or ischemia/reperfusion (I/R) injury. Enhanced expression of MnSOD attenuates cardiomyocyte apoptosis and myocardial infarction induced by I/R injury. Further, we show that miR-23a directly regulates the expression of MnSOD. miR-23a regulates cardiomyocyte apoptosis by suppressing the expression of MnSOD. Our study reveals a novel model regulating cardiomyocyte apoptosis which is composed of miR-23a and MnSOD. Our study provides a new method to tackling apoptosis related cardiac diseases.


Supported by : National Natural Science Foundation of China, Beijing Natural Science Foundation


  1. Barringhaus, K.G., and Zamore, P.D. (2009). MicroRNAs: regulating a change of heart. Circulation 119, 2217-2224.
  2. Bartel, D.P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281-297.
  3. Barwari, T., Joshi, A., and Mayr, M. (2016). MicroRNAs in cardiovascular disease. J. Am. Coll.Cardiol. 68, 2577-2584.
  4. Candas, D., and Li, J.J. (2014). MnSOD in oxidative stress responsepotential regulation via mitochondrial protein influx. Antioxid. Redox Signal. 20, 1599-1617.
  5. Chen, Y.R., and Zweier, J.L. (2014). Cardiac mitochondria and reactive oxygen species generation. Circ. Res. 114, 524-537.
  6. Chen, C., Ridzon, D.A., Broomer, A.J., Zhou, Z., Lee, D.H., Nguyen, J.T., Barbisin, M., Xu, N.L., Mahuvakar, V.R., Andersen, M.R., et al. (2005). Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res. 33, e179.
  7. Choi, W.Y., Giraldez, A.J., and Schier, A.F. (2007). Target protectors reveal dampening and balancing of Nodal agonist and antagonist by miR-430. Science 318, 271-274.
  8. Cramer-Morales, K., Heer, C.D., Mapuskar, K.A., and Domann, F.E. (2015). SOD2 targeted gene editing by CRISPR/Cas9 yields Human cells devoid of MnSOD. Free Radic. Biol. Med. 89, 379-386.
  9. Dixon, S.J., and Stockwell, B.R. (2014). The role of iron and reactive oxygen species in cell death. Nat. Chem. Biol. 10, 9-17.
  10. Dumortier, O., Hinault, C., and Van Obberghen, E. (2013). MicroRNAs and metabolism crosstalk in energy homeostasis. Cell Metabol. 18, 312-324.
  11. Duygu, B., de Windt, L.J., and da Costa Martins, P.A. (2016). Targeting microRNAs in heart failure. Trends Cardiovasc. Med. 26, 99-110.
  12. Filipowicz, W., Bhattacharyya, S.N., and Sonenberg, N. (2008). Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat. Rev. Genet. 9, 102-114.
  13. Fukai, T., and Ushio-Fukai, M. (2011). Superoxide dismutases: role in redox signaling, vascular function, and diseases. Antioxid. Redox Signal. 15, 1583-1606.
  14. Hata, A. (2013). Functions of microRNAs in cardiovascular biology and disease. Ann. Rev. Physiol. 75, 69-93.
  15. Kalogeris, T., Bao, Y., and Korthuis, R.J. (2014). Mitochondrial reactive oxygen species: a double edged sword in ischemia/reperfusion vs preconditioning. Redox. Biol. 2, 702-714.
  16. Khan, R.S., Fonseca-Kelly, Z., Callinan, C., Zuo, L., Sachdeva, M.M., and Shindler, K.S. (2012). SIRT1 activating compounds reduce oxidative stress and prevent cell death in neuronal cells. Front. Cell. Neurosci. 6, 63.
  17. Kimoto, K., Suzuki, K., Kizaki, T., Hitomi, Y., Ishida, H., Katsuta, H., Itoh, E., Ookawara, T., Honke, K., and Ohno, H. (2003). Gliclazide protects pancreatic beta-cells from damage by hydrogen peroxide. Biochem. Biophy. Res. Commun. 303, 112-119.
  18. Kinscherf, R., Claus, R., Wagner, M., Gehrke, C., Kamencic, H., Hou, D., Nauen, O., Schmiedt, W., Kovacs, G., Pill, J., et al. (1998). Apoptosis caused by oxidized LDL is manganese superoxide dismutase and p53 dependent. FASEB J. 12, 461-467.
  19. Kopf, P.G., Scott, J.A., Agbor, L.N., Boberg, J.R., Elased, K.M., Huwe, J.K., and Walker, M.K. (2010). Cytochrome P4501A1 is required for vascular dysfunction and hypertension induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol. Sci. 117, 537-546.
  20. Lambeth, J.D., and Neish, A.S. (2014). Nox enzymes and new thinking on reactive oxygen: a double-edged sword revisited. Ann. Rev. Pathol. 9, 119-145.
  21. Landmesser, U., Dikalov, S., Price, S.R., McCann, L., Fukai, T., Holland, S.M., Mitch, W.E., and Harrison, D.G. (2003). Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. J. Clin. Invest. 111, 1201-1209.
  22. Latronico, M.V., and Condorelli, G. (2009). MicroRNAs and cardiac pathology. Nat. Rev. Cardiol. 6, 419-429.
  23. Li, Y., Huang, T.T., Carlson, E.J., Melov, S., Ursell, P.C., Olson, J.L., Noble, L.J., Yoshimura, M.P., Berger, C., Chan, P.H., et al. (1995). Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat. Genet. 11, 376-381.
  24. Li, J., Aung, L.H., Long, B., Qin, D., An, S., and Li, P. (2015). miR-23a binds to p53 and enhances its association with miR-128 promoter. Sci. Rep. 5, 16422.
  25. Lin, Z., Murtaza, I., Wang, K., Jiao, J., Gao, J., and Li, P.F. (2009). miR-23a functions downstream of NFATc3 to regulate cardiac hypertrophy. Proc. Natl. Acad. Sci. USA 106, 12103-12108.
  26. Liochev, S.I. (2013). Reactive oxygen species and the free radical theory of aging. Free Rad. Biol. Med. 60, 1-4.
  27. Long, B., Wang, K., Li, N., Murtaza, I., Xiao, J.Y., Fan, Y.Y., Liu, C.Y., Li, W.H., Cheng, Z., and Li, P. (2013). miR-761 regulates the mitochondrial network by targeting mitochondrial fission factor. Free Rad. Biol. Med. 65, 371-379.
  28. Moe, G.W., and Marin-Garcia, J. (2016). Role of cell death in the progression of heart failure. Heart Fail. Rev. 21, 157-167.
  29. Murphy, M.P. (2009). How mitochondria produce reactive oxygen species. Biochem. J. 417, 1-13.
  30. Murphy, M.P., Holmgren, A., Larsson, N.G., Halliwell, B., Chang, C.J., Kalyanaraman, B., Rhee, S.G., Thornalley, P.J., Partridge, L., Gems, D., et al. (2011). Unraveling the biological roles of reactive oxygen species. Cell Metabol. 3, 361-366.
  31. Olivetti, G., Abbi, R., Quaini, F., Kajstura, J., Cheng, W., Nitahara, J.A., Quaini, E., Di Loreto, C., Beltrami, C.A., Krajewski, S., et al. (1997). Apoptosis in the failing human heart. N Engl. J. Med. 336, 1131-1141.
  32. Sena, L.A., and Chandel, N.S. (2012). Physiological roles of mitochondrial reactive oxygen species. Mol. Cell 48, 158-167.
  33. Skommer, J., Rana, I., Marques, F.Z., Zhu, W., Du, Z., and Charchar, F.J. (2014). Small molecules, big effects: the role of microRNAs in regulation of cardiomyocyte death. Cell Death Dis. 5, e1325.
  34. Subramanian, S., and Steer, C.J. (2010). MicroRNAs as gatekeepers of apoptosis. J. Cell. Physiol. 223, 289-298.
  35. Takami, Y., Uto, H., Tamai, T., Sato, Y., Ishida, Y., Morinaga, H., Sakakibara, Y., Moriuchi, A., Oketani, M., Ido, A., et al. (2010). Identification of a novel biomarker for oxidative stress induced by hydrogen peroxide in primary human hepatocytes using the 2-nitrobenzenesulfenyl chloride isotope labeling method. Hepatol. Res. 40, 438-445.
  36. Wang, K., Long, B., Liu, F., Wang, J.X., Liu, C.Y., Zhao, B., Zhou, L.Y., Sun, T., Wang, M., Yu, T., et al. (2016). A circular RNA protects the heart from pathological hypertrophy and heart failure by targeting miR-223. Eur. Heart J. 37, 2602-2611.
  37. Yang, J., Marden, J.J., Fan, C., Sanlioglu, S., Weiss, R.M., Ritchie, T.C., Davisson, R.L., and Engelhardt, J.F. (2003). Genetic redox preconditioning differentially modulates AP-1 and NF kappa B responses following cardiac ischemia/reperfusion injury and protects against necrosis and apoptosis. Mol. Therapy 7, 341-353.
  38. Yang, B., Lin, H., Xiao, J., Lu, Y., Luo, X., Li, B., Zhang, Y., Xu, C., Bai, Y., Wang, H., et al. (2007). The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat. Med. 13, 486-491.
  39. Zhao, H., Tao, Z., Wang, R., Liu, P., Yan, F., Li, J., Zhang, C., Ji, X., and Luo, Y. (2014). MicroRNA-23a-3p attenuates oxidative stress injury in a mouse model of focal cerebral ischemia-reperfusion. Brain Res. 1592, 65-72.

Cited by

  1. Bulky DNA adducts, microRNA profiles, and lipid biomarkers in Norwegian tunnel finishing workers occupationally exposed to diesel exhaust vol.76, pp.1, 2018,
  2. Apoptotic suppression of inflammatory macrophages and foam cells in vascular tissue by miR-23a pp.2190-7196, 2019,
  3. Postnatal Expression Profile of microRNAs Associated with Cardiovascular and Cerebrovascular Diseases in Children at the Age of 3 to 11 Years in Relation to Previous Occurrence of Pregnancy-Related Complications vol.20, pp.3, 2019,