DOI QR코드

DOI QR Code

Application of Functional Near-Infrared Spectroscopy to the Study of Brain Function in Humans and Animal Models

  • Kim, Hak Yeong (Department of Brain and Cognitive Sciences, DGIST) ;
  • Seo, Kain (Department of Brain and Cognitive Sciences, DGIST) ;
  • Jeon, Hong Jin (Department of Psychiatry, Depression Center, Samsung Medical Center, Sungkyunkwan University, School of Medicine) ;
  • Lee, Unjoo (Department of Electronic Engineering, Hallym University) ;
  • Lee, Hyosang (Department of Brain and Cognitive Sciences, DGIST)
  • Received : 2017.07.31
  • Accepted : 2017.08.03
  • Published : 2017.08.31

Abstract

Functional near-infrared spectroscopy (fNIRS) is a noninvasive optical imaging technique that indirectly assesses neuronal activity by measuring changes in oxygenated and deoxygenated hemoglobin in tissues using near-infrared light. fNIRS has been used not only to investigate cortical activity in healthy human subjects and animals but also to reveal abnormalities in brain function in patients suffering from neurological and psychiatric disorders and in animals that exhibit disease conditions. Because of its safety, quietness, resistance to motion artifacts, and portability, fNIRS has become a tool to complement conventional imaging techniques in measuring hemodynamic responses while a subject performs diverse cognitive and behavioral tasks in test settings that are more ecologically relevant and involve social interaction. In this review, we introduce the basic principles of fNIRS and discuss the application of this technique in human and animal studies.

Keywords

brain recording;functional neuroimaging;fNIRS;functional near-infrared spectroscopy;neurovascular coupling

Acknowledgement

Supported by : National Research Foundation of Korea (NRF), KBRI

References

  1. Abookasis, D., Shochat, A., and Mathews, M.S. (2013). Monitoring hemodynamic and morphologic responses to closed head injury in a mouse model using orthogonal diffuse near-infrared light reflectance spectroscopy. J. Biomed. Optics 18, 045003. https://doi.org/10.1117/1.JBO.18.4.045003
  2. Akiyoshi, J., Hieda, K., Aoki, Y., and Nagayama, H. (2003). Frontal brain hypoactivity as a biological substrate of anxiety in patients with panic disorders. Neuropsychobiology 47, 165-170. https://doi.org/10.1159/000070587
  3. Al-Yahya, E., Johansen-Berg, H., Kischka, U., Zarei, M., Cockburn, J., and Dawes, H. (2016). Prefrontal cortex activation while walking under dual-task conditions in stroke: a multimodal imaging study. neurorehabil. Neural Repair 30, 591-599. https://doi.org/10.1177/1545968315613864
  4. Altvater-Mackensen, N., and Grossmann, T. (2016). The role of left inferior frontal cortex during audiovisual speech perception in infants. Neuroimage 133, 14-20. https://doi.org/10.1016/j.neuroimage.2016.02.061
  5. Andreu-Perez, J., Leff, D.R., Shetty, K., Darzi, A., and Yang, G.-Z. (2016). Disparity in frontal lobe connectivity on a complex bimanual motor task aids in classification of operator skill level. Brain Connectivity 6, 375-388. https://doi.org/10.1089/brain.2015.0350
  6. Araki, A., Ikegami, M., Okayama, A., Matsumoto, N., Takahashi, S., Azuma, H., and Takahashi, M. (2015). Improved prefrontal activity in AD/HD children treated with atomoxetine: a NIRS study. Brain Dev. 37, 76-87. https://doi.org/10.1016/j.braindev.2014.03.011
  7. Ardestani, A., Shen, W., Darvas, F., Toga, A.W., and Fuster, J.M. (2016). Modulation of frontoparietal neurovascular dynamics in working memory. J. Cogn. Neurosci. 28, 379-401. https://doi.org/10.1162/jocn_a_00903
  8. Ayaz, H., Onaral, B., Izzetoglu, K., Shewokis, P.A., McKendrick, R., and Parasuraman, R. (2013). Continuous monitoring of brain dynamics with functional near infrared spectroscopy as a tool for neuroergonomic research: empirical examples and a technological development. Front. Hum. Neurosci. 7, 871.
  9. Azechi, M., Iwase, M., Ikezawa, K., Takahashi, H., Canuet, L., Kurimoto, R., Nakahachi, T., Ishii, R., Fukumoto, M., Ohi, K., et al. (2010). Discriminant analysis in schizophrenia and healthy subjects using prefrontal activation during frontal lobe tasks: a near-infrared spectroscopy. Schizophr. Res. 117, 52-60. https://doi.org/10.1016/j.schres.2009.10.003
  10. Baker, J.M., Liu, N., Cui, X., Vrticka, P., Saggar, M., Hosseini, S.M.H., and Reiss, A.L. (2016). Sex differences in neural and behavioral signatures of cooperation revealed by fNIRS hyperscanning. Sci. Rep. 6, 26492. https://doi.org/10.1038/srep26492
  11. Boas, D.A., Elwell, C.E., Ferrari, M., and Taga, G. (2014). Twenty years of functional near-infrared spectroscopy: introduction for the special issue. Neuroimage 85, 1-5. https://doi.org/10.1016/j.neuroimage.2013.11.033
  12. Bonner, R., Nossal, R., Havlin, S., and Weiss, G. (1987). Model for photon migration in turbid biological media. JOSA A 4, 423-432. https://doi.org/10.1364/JOSAA.4.000423
  13. Bunce, S.C., Izzetoglu, M., Izzetoglu, K., Onaral, B., and Pourrezaei, K. (2006). Functional near-infrared spectroscopy. IEEE Eng. Med. Biol. Mag. 25, 54-62.
  14. Carius, D., Andra, C., Clauss, M., Ragert, P., Bunk, M., and Mehnert, J. (2016). Hemodynamic response alteration as a function of task complexity and expertise - an fNIRS study in jugglers. Front. Hum. Neurosci. 10, 126.
  15. Carrieri, M., Petracca, A., Lancia, S., Moro, S.B., Brigadoi, S., Spezialetti, M., Ferrari, M., Placidi, G., and Quaresima, V. (2016). Prefrontal cortex activation upon a demanding virtual hand-controlled task: a new frontier for neuroergonomics. Front. Hum. Neurosci. 10, 53.
  16. Chance, B., Zhuang, Z., UnAh, C., Alter, C., and Lipton, L. (1993). Cognition-activated low-frequency modulation of light absorption in human brain. Proc. Natl. Acad. Sci. USA 90, 3770-3774. https://doi.org/10.1073/pnas.90.8.3770
  17. Chang, G., Wang, K., Hsu, C., and Chen, J. (2007). Development of functional near infrared spectroscopy system for assessing cerebral hemodynamics of rats with ischemic stroke. J. Med. Biol. Eng. 27, 207.
  18. Choe, J., Coffman, B.A., Bergstedt, D.T., Ziegler, M.D., and Phillips, M.E. (2016). Transcranial direct current stimulation modulates neuronal activity and learning in pilot training. Front. Hum. Neurosci. 10, 34.
  19. Chou, P.H., Lin, W.H., Lin, C.C., Hou, P.H., Li, W.R., Hung, C.C., Lin, C.P., Lan, T.H., and Chan, C.H. (2015). Duration of untreated psychosis and brain function during verbal fluency testing in firstepisode schizophrenia: a near-infrared spectroscopy study. Sci. Rep. 5, 18069.
  20. Crespi, F., Bandera, A., Donini, M., Heidbreder, C., and Rovati, L. (2005). Non-invasive in vivo infrared laser spectroscopy to analyse endogenous oxy-haemoglobin, deoxy-haemoglobin, and blood volume in the rat CNS. J. Neurosci. Methods 145, 11-22. https://doi.org/10.1016/j.jneumeth.2004.11.016
  21. Cui, G., Jun, S.B., Jin, X., Luo, G., Pham, M.D., Lovinger, D.M., Vogel, S.S., and Costa, R.M. (2014). Deep brain optical measurements of cell type-specific neural activity in behaving mice. Nat. Protocols 9, 1213. https://doi.org/10.1038/nprot.2014.080
  22. Cutini, S., and Brigadoi, S. (2014). Unleashing the future potential of functional near-infrared spectroscopy in brain sciences. J. Neurosci. Methods 232, 152-156. https://doi.org/10.1016/j.jneumeth.2014.05.024
  23. Di, H., and Zhang, X. (2017). Deception detection by hybrid-pair wireless fNIRS system. Int. J. Dig. Crime Forensic. (IJDCF) 9, 15-24.
  24. Dommer, L., Jager, N., Scholkmann, F., Wolf, M., and Holper, L. (2012). Between-brain coherence during joint n-back task performance: a twoperson functional near-infrared spectroscopy study. Behav. Brain Res. 234, 212-222. https://doi.org/10.1016/j.bbr.2012.06.024
  25. Egashira, K., Matsuo, K., Nakashima, M., Watanuki, T., Harada, K., Nakano, M., Matsubara, T., Takahashi, K., and Watanabe, Y. (2015). Blunted brain activation in patients with schizophrenia in response to emotional cognitive inhibition: a functional near-infrared spectroscopy study. Schizophr. Res. 162, 196-204. https://doi.org/10.1016/j.schres.2014.12.038
  26. Ehlis, A.C., Herrmann, M.J., Plichta, M.M., and Fallgatter, A.J. (2007). Cortical activation during two verbal fluency tasks in schizophrenic patients and healthy controls as assessed by multi-channel nearinfrared spectroscopy. Psychiatry Res. Neuroimaging 156, 1-13. https://doi.org/10.1016/j.pscychresns.2006.11.007
  27. Faraone, S.V., Perlis, R.H., Doyle, A.E., Smoller, J.W., Goralnick, J.J., Holmgren, M.A., and Sklar, P. (2005). Molecular genetics of attentiondeficit/ hyperactivity disorder. Biol. Psychiatry 57, 1313-1323. https://doi.org/10.1016/j.biopsych.2004.11.024
  28. Ferrari, M., and Quaresima, V. (2012). A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. Neuroimage 63, 921-935. https://doi.org/10.1016/j.neuroimage.2012.03.049
  29. Fox, P.T., and Raichle, M.E. (1986). Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc. Natl. Acad. Sci. USA 83, 1140-1144. https://doi.org/10.1073/pnas.83.4.1140
  30. Fox, P.T., Raichle, M.E., Mintun, M.A., and Dence, C. (1988). Nonoxidative glucose consumption during focal physiologic neural activity. Science 241, 462-464. https://doi.org/10.1126/science.3260686
  31. Foy, H.J., Runham, P., and Chapman, P. (2016). Prefrontal cortex activation and young driver behaviour: a fNIRS study. PLoS One 11, e0156512. https://doi.org/10.1371/journal.pone.0156512
  32. Franceschini, M.A., Nissila, I., Wu, W., Diamond, S.G., Bonmassar, G., and Boas, D.A. (2008). Coupling between somatosensory evoked potentials and hemodynamic response in the rat. Neuroimage 41, 189-203. https://doi.org/10.1016/j.neuroimage.2008.02.061
  33. Fujimoto, H., Mihara, M., Hattori, N., Hatakenaka, M., Kawano, T., Yagura, H., Miyai, I., and Mochizuki, H. (2014). Cortical changes underlying balance recovery in patients with hemiplegic stroke. Neuroimage 85, 547-554. https://doi.org/10.1016/j.neuroimage.2013.05.014
  34. Fuster, J., Guiou, M., Ardestani, A., Cannestra, A., Sheth, S., Zhou, Y.D., Toga, A., and Bodner, M. (2005). Near-infrared spectroscopy (NIRS) in cognitive neuroscience of the primate brain. Neuroimage 26, 215-220. https://doi.org/10.1016/j.neuroimage.2005.01.055
  35. Gateau, T., Durantin, G., Lancelot, F., Scannella, S., and Dehais, F. (2015). Real-time state estimation in a flight simulator using fNIRS. PLoS One 10, e0121279. https://doi.org/10.1371/journal.pone.0121279
  36. Ghosh, K.K., Burns, L.D., Cocker, E.D., Nimmerjahn, A., Ziv, Y., El Gamal, A., and Schnitzer, M.J. (2011). Miniaturized integration of a fluorescence microscope. Nat. Methods 8, 871-878. https://doi.org/10.1038/nmeth.1694
  37. Girven, K.S., and Sparta, D.R. (2017). Probing deep brain circuitry: new advances in in vivo calcium measurement strategies. ACS Chem. Neurosci. 8, 243-251. https://doi.org/10.1021/acschemneuro.6b00307
  38. Grandjean, J., Schroeter, A., Batata, I., and Rudin, M. (2014). Optimization of anesthesia protocol for resting-state fMRI in mice based on differential effects of anesthetics on functional connectivity patterns. Neuroimage 102, 838-847. https://doi.org/10.1016/j.neuroimage.2014.08.043
  39. Gratton, G., Maier, J.S., Fabiani, M., Mantulin, W.W., and Gratton, E. (1994). Feasibility of intracranial near‐infrared optical scanning. Psychophysiology 31, 211-215. https://doi.org/10.1111/j.1469-8986.1994.tb01043.x
  40. Guldimann, K., Vogeli, S., Wolf, M., Wechsler, B., and Gygax, L. (2015). Frontal brain deactivation during a non-verbal cognitive judgement bias test in sheep. Brain Cogn. 93, 35-41. https://doi.org/10.1016/j.bandc.2014.11.004
  41. Gygax, L., Reefmann, N., Pilheden, T., Scholkmann, F., and Keeling, L. (2015). Dog behavior but not frontal brain reaction changes in repeated positive interactions with a human: a non-invasive pilot study using functional near-infrared spectroscopy (fNIRS). Behav. Brain Res. 281, 172-176. https://doi.org/10.1016/j.bbr.2014.11.044
  42. Gygax, L., Reefmann, N., Wolf, M., and Langbein, J. (2013). Prefrontal cortex activity, sympatho-vagal reaction and behaviour distinguish between situations of feed reward and frustration in dwarf goats. Behav. Brain Res 239, 104-114. https://doi.org/10.1016/j.bbr.2012.10.052
  43. Han, C.-H., Song, H., Kang, Y.-G., Kim, B.-M., and Im, C.-H. (2014). Hemodynamic responses in rat brain during transcranial direct current stimulation: a functional near-infrared spectroscopy study. Biomed. Optics Exp. 5, 1812-1821. https://doi.org/10.1364/BOE.5.001812
  44. Harmat, L., de Manzano, O., Theorell, T., Hogman, L., Fischer, H., and Ullen, F. (2015). Physiological correlates of the flow experience during computer game playing. Int. J. Psychophysiol. 97, 1-7. https://doi.org/10.1016/j.ijpsycho.2015.05.001
  45. He, J.-W., Tian, F., Liu, H., and Peng, Y.B. (2012). Cerebrovascular responses of the rat brain to noxious stimuli as examined by functional near-infrared whole brain imaging. J. Neurophysiol. 107, 2853-2865. https://doi.org/10.1152/jn.00050.2011
  46. Helmchen, F. (2009). Two-photon functional imaging of neuronal activity. In Frostig, R.D., editor., In vivo optical imaging of brain function., 2nd ed., Boca Raton (FL) (CRC Press/Taylor & Francis)., Chapter 2.
  47. Herold, F., Orlowski, K., Bormel, S., and Muller, N.G. (2017). Cortical activation during balancing on a balance board. Hum. Mov. Sci. 51, 51-58. https://doi.org/10.1016/j.humov.2016.11.002
  48. Herrmann, M.J., Ehlis, A.C., and Fallgatter, A.J. (2004). Bilaterally reduced frontal activation during a verbal fluency task in depressed patients as measured by near-infrared spectroscopy. J. Neuropsychiatr. Clin. Neurosci. 16, 170-175. https://doi.org/10.1176/jnp.16.2.170
  49. Holper, L., and Wolf, M. (2011). Single-trial classification of motor imagery differing in task complexity: a functional near-infrared spectroscopy study. J. Neuroeng. Rehabil. 8, 34. https://doi.org/10.1186/1743-0003-8-34
  50. Holper, L., Muehlemann, T., Scholkmann, F., Eng, K., Kiper, D., and Wolf, M. (2010). Testing the potential of a virtual reality neurorehabilitation system during performance of observation, imagery and imitation of motor actions recorded by wireless functional nearinfrared spectroscopy (fNIRS). J. Neuroeng. Rehabil. 7, 57. https://doi.org/10.1186/1743-0003-7-57
  51. Holper, L., Shalom, D.E., Wolf, M., and Sigman, M. (2011). Understanding inverse oxygenation responses during motor imagery: a functional near-infrared spectroscopy study. Eur. J. Neurosci. 33, 2318-2328. https://doi.org/10.1111/j.1460-9568.2011.07720.x
  52. Holper, L., Kobashi, N., Kiper, D., Scholkmann, F., Wolf, M., and Eng, K. (2012a). Trial-to-trial variability differentiates motor imagery during observation between low versus high responders: a functional nearinfrared spectroscopy study. Behav. Brain Res. 229, 29-40. https://doi.org/10.1016/j.bbr.2011.12.038
  53. Holper, L., Scholkmann, F., Shalom, D.E., and Wolf, M. (2012b). Extension of mental preparation positively affects motor imagery as compared to motor execution: a functional near-infrared spectroscopy study. Cortex 48, 593-603. https://doi.org/10.1016/j.cortex.2011.02.001
  54. Holper, L., Scholkmann, F., and Wolf, M. (2012c). Between-brain connectivity during imitation measured by fNIRS. Neuroimage 63, 212-222. https://doi.org/10.1016/j.neuroimage.2012.06.028
  55. Holper, L., Goldin, A.P., Shalom, D.E., Battro, A.M., Wolf, M., and Sigman, M. (2013). The teaching and the learning brain: a cortical hemodynamic marker of teacher-student interactions in the Socratic dialog. Int. J. Edu. Res. 59, 1-10. https://doi.org/10.1016/j.ijer.2013.02.002
  56. Holper, L., Wolf, M., and Tobler, P.N. (2014). Comparison of functional near-infrared spectroscopy and electrodermal activity in assessing objective versus subjective risk during risky financial decisions. Neuroimage 84, 833-842. https://doi.org/10.1016/j.neuroimage.2013.09.047
  57. Hoshi, Y., Kobayashi, N., and Tamura, M. (1985). Interpretation of near-infrared spectroscopy signals: a study with a newly developed perfused rat brain model. J. Appl. Physiol. 90, 1657-1662.
  58. Ichikawa, H., Nakato, E., Kanazawa, S., Shimamura, K., Sakuta, Y., Sakuta, R., Yamaguchi, M.K., and Kakigi, R. (2014). Hemodynamic response of children with attention-deficit and hyperactive disorder (ADHD) to emotional facial expressions. Neuropsychologia 63, 51-58. https://doi.org/10.1016/j.neuropsychologia.2014.08.010
  59. Ikezawa, K., Iwase, M., Ishii, R., Azechi, M., Canuet, L., Ohi, K., Yasuda, Y., Iike, N., Kurimoto, R., Takahashi, H., et al. (2009). Impaired regional hemodynamic response in schizophrenia during multiple prefrontal activation tasks: a two-channel near-infrared spectroscopy study. Schizophr. Res. 108, 93-103. https://doi.org/10.1016/j.schres.2008.12.010
  60. Im, C.-H., Jung, Y.-J., Lee, S., Koh, D., Kim, D.-W., and Kim, B.-M. (2010). Estimation of directional coupling between cortical areas using near-Infrared spectroscopy (NIRS). Opt. Express 18, 5730-5739. https://doi.org/10.1364/OE.18.005730
  61. Inoue, Y., Sakihara, K., Gunji, A., Ozawa, H., Kimiya, S., Shinoda, H., Kaga, M., and Inagaki, M. (2012). Reduced prefrontal hemodynamic response in children with ADHD during the go/nogo task: a NIRS study. Neuroreport 23, 55-60. https://doi.org/10.1097/WNR.0b013e32834e664c
  62. Irani, F., Platek, S.M., Bunce, S., Ruocco, A.C., and Chute, D. (2007). Functional near infrared spectroscopy (fNIRS): an emerging neuroimaging technology with important applications for the study of brain disorders. Clin. Neuropsychol. 21, 9-37. https://doi.org/10.1080/13854040600910018
  63. Ishii-Takahashi, A., Takizawa, R., Nishimura, Y., Kawakubo, Y., Hamada, K., Okuhata, S., Kawasaki, S., Kuwabara, H., Shimada, T., Todokoro, A., et al. (2015). Neuroimaging-aided prediction of the effect of methylphenidate in children with attention-deficit hyperactivity disorder: a randomized controlled trial. Neuropsychopharmacology 40, 2676-2685. https://doi.org/10.1038/npp.2015.128
  64. Iwanaga, R., Tanaka, G., Nakane, H., Honda, S., Imamura, A., and Ozawa, H. (2013). Usefulness of near-infrared spectroscopy to detect brain dysfunction in children with autism spectrum disorder when inferring the mental state of others. Psychiatry Clin. Neurosci. 67, 203-209. https://doi.org/10.1111/pcn.12052
  65. Jiang, J., Dai, B.H., Peng, D.L., Zhu, C.Z., Liu, L., and Lu, C.M. (2012). Neural Synchronization during face-to-face communication. J. Neurosci. 32, 16064-16069. https://doi.org/10.1523/JNEUROSCI.2926-12.2012
  66. Jobsis, F.F. (1977). Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 198, 1264-1267. https://doi.org/10.1126/science.929199
  67. Jonckers, E., Van Audekerke, J., De Visscher, G., Van der Linden, A., and Verhoye, M. (2011). Functional connectivity fMRI of the rodent brain: comparison of functional connectivity networks in rat and mouse. PLoS One 6, e18876. https://doi.org/10.1371/journal.pone.0018876
  68. Kajiume, A., Aoyama-Setoyama, S., Saito-Hori, Y., Ishikawa, N., and Kobayashi, M. (2013). Reduced brain activation during imitation and observation of others in children with pervasive developmental disorder: a pilot study. Behav. Brain Funct. 9, 21. https://doi.org/10.1186/1744-9081-9-21
  69. Kashou, N.H., Giacherio, B.M., Nahhas, R.W., and Jadcherla, S.R. (2016). Hand-grasping and finger tapping induced similar functional near-infrared spectroscopy cortical responses. Neurophotonics 3, 025006. https://doi.org/10.1117/1.NPh.3.2.025006
  70. Kim, C.K., Yang, S.J., Pichamoorthy, N., Young, N.P., Kauvar, I., Jennings, J.H., Lerner, T.N., Berndt, A., Lee, S.Y., and Ramakrishnan, C. (2016). Simultaneous fast measurement of circuit dynamics at multiple sites across the mammalian brain. Nat. Methods 13, 325-328. https://doi.org/10.1038/nmeth.3770
  71. Kita, Y., Gunji, A., Inoue, Y., Goto, T., Sakihara, K., Kaga, M., Inagaki, M., and Hosokawa, T. (2011). Self-face recognition in children with autism spectrum disorders: a near-infrared spectroscopy study. Brain Dev. 33, 494-503. https://doi.org/10.1016/j.braindev.2010.11.007
  72. Kleinschmidt, A., Obrig, H., Requardt, M., Merboldt, K.-D., Dirnagl, U., Villringer, A., and Frahm, J. (1996). Simultaneous recording of cerebral blood oxygenation changes during human brain activation by magnetic resonance imaging and near-infrared spectroscopy. J. Cereb. Blood Flow Metabol. 16, 817-826. https://doi.org/10.1097/00004647-199609000-00006
  73. Kochel, A., Schongassner, F., Feierl-Gsodam, S., and Schienle, A. (2015). Processing of affective prosody in boys suffering from attention deficit hyperactivity disorder: a near-infrared spectroscopy study. Soc. Neurosci. 10, 583-591. https://doi.org/10.1080/17470919.2015.1017111
  74. Koike, S., Takizawa, R., Nishimura, Y., Takano, Y., Takayanagi, Y., Kinou, M., Araki, T., Harima, H., Fukuda, M., Okazaki, Y., et al. (2011). Different hemodynamic response patterns in the prefrontal cortical sub-regions according to the clinical stages of psychosis. Schizophr. Res. 132, 54-61. https://doi.org/10.1016/j.schres.2011.07.014
  75. Kubota, Y., Toichi, M., Shimizu, M., Mason, R.A., Coconcea, C.M., Findling, R.L., Yamamoto, K., and Calabrese, J.R. (2005). Prefrontal activation during verbal fluency tests in schizophrenia-a nearinfrared spectroscopy (NIRS) study. Schizophr. Res. 77, 65-73. https://doi.org/10.1016/j.schres.2005.01.007
  76. Kuwabara, H., Kasai, K., Takizawa, R., Kawakubo, Y., Yamasue, H., Rogers, M.A., Ishijima, M., Watanabe, K., and Kato, N. (2006). Decreased prefrontal activation during letter fluency task in adults with pervasive developmental disorders: a near-infrared spectroscopy study. Behav. Brain Res. 172, 272-277. https://doi.org/10.1016/j.bbr.2006.05.020
  77. Lee, S., Lee, M., Koh, D., Kim, B.-M., and Choi, J.H. (2010). Cerebral hemodynamic responses to seizure in the mouse brain: simultaneous near-infrared spectroscopy-electroencephalography study. J. Biomed. Opt. 15, 037010-037018. https://doi.org/10.1117/1.3365952
  78. Lee, S., Koh, D., Jo, A., Lim, H.Y., Jung, Y.J., Kim, C.K., Seo, Y., Im, C.H., Kim, B.M., and Suh, M. (2012). Depth-dependent cerebral hemodynamic responses following direct cortical electrical stimulation (DCES) revealed by in vivo dual-optical imaging techniques. Opt. Express. 20, 6932-6943. https://doi.org/10.1364/OE.20.006932
  79. Lee, Y.A., Pollet, V., Kato, A., and Goto, Y. (2017). Prefrontal cortical activity associated with visual stimulus categorization in non-human primates measured with near-infrared spectroscopy. Behav. Brain Res. 317, 327-331. https://doi.org/10.1016/j.bbr.2016.09.068
  80. Leon-Carrion, J., and Leon-Dominguez, U. (2012). Functional nearinfrared spectroscopy (fNIRS): principles and neuroscientific applications. Neuroimaging-Methods (InTech), 47-74.
  81. Liu, N., Cliffer, S., Pradhan, A.H., Lightbody, A., Hall, S.S., and Reiss, A.L. (2017). Optical-imaging-based neurofeedback to enhance therapeutic intervention in adolescents with autism: methodology and initial data. Neurophotonics 4, 011003.
  82. Lloyd-Fox, S., Blasi, A., and Elwell, C. (2010). Illuminating the developing brain: the past, present and future of functional near infrared spectroscopy. Neurosci. Biobehav. Rev. 34, 269-284. https://doi.org/10.1016/j.neubiorev.2009.07.008
  83. Lloyd-Fox, S., Szeplaki-Kollod, B., Yin, J., and Csibra, G. (2015). Are you talking to me? Neural activations in 6-month-old infants in response to being addressed during natural interactions. Cortex 70, 35-48. https://doi.org/10.1016/j.cortex.2015.02.005
  84. Macnab, A., and Shadgan, B. (2012). Biomedical applications of wireless continuous wave near infrared spectroscopy. Biomed. Spectroscopy and Imaging 1, 205-222.
  85. Mahmoudzadeh, M., Dehaene-Lambertz, G., and Wallois, F. (2017). Electrophysiological and hemodynamic mismatch responses in rats listening to human speech syllables. PLoS One 12, e0173801. https://doi.org/10.1371/journal.pone.0173801
  86. Maidan, I., Bernad-Elazari, H., Gazit, E., Giladi, N., Hausdorff, J.M., and Mirelman, A. (2015). Changes in oxygenated hemoglobin link freezing of gait to frontal activation in patients with Parkinson disease: an fNIRS study of transient motor-cognitive failures. J. Neurol. 262, 899-908. https://doi.org/10.1007/s00415-015-7650-6
  87. Maidan, I., Nieuwhof, F., Bernad-Elazari, H., Reelick, M.F., Bloem, B.R., Giladi, N., Deutsch, J.E., Hausdorff, J.M., Claassen, J.A.H., and Mirelman, A. (2016). The role of the frontal lobe in complex walking among patients with Parkinson's disease and healthy older adults: an fNIRS study. Neurorehabil. Neural Repair 30, 963-971. https://doi.org/10.1177/1545968316650426
  88. Martin, C., Zheng, Y., Sibson, N.R., Mayhew, J.E., and Berwick, J. (2013). Complex spatiotemporal haemodynamic response following sensory stimulation in the awake rat. Neuroimage 66, 1-8. https://doi.org/10.1016/j.neuroimage.2012.10.006
  89. Marumo, K., Takizawa, R., Kinou, M., Kawasaki, S., Kawakubo, Y., Fukuda, M., and Kasai, K. (2014). Functional abnormalities in the left ventrolateral prefrontal cortex during a semantic fluency task, and their association with thought disorder in patients with schizophrenia. Neuroimage 85, 518-526. https://doi.org/10.1016/j.neuroimage.2013.04.050
  90. Matsuo, K., Kato, N., and Kato, T. (2002). Decreased cerebral haemodynamic response to cognitive and physiological tasks in mood disorders as shown by near-infrared spectroscopy. Psychol. Med. 32, 1029-1037. https://doi.org/10.1017/S0033291702005974
  91. Matsuo, K., Kato, T., Taneichi, K., Matsumoto, A., Ohtani, T., Hamamoto, T., Yamasue, H., Sakano, Y., Sasaki, T., Sadamatsu, M., et al. (2003a). Activation of the prefrontal cortex to trauma-related stimuli measured by near-infrared spectroscopy in posttraumatic stress disorder due to terrorism. Psychophysiology 40, 492-500. https://doi.org/10.1111/1469-8986.00051
  92. Matsuo, K., Taneichi, K., Matsumoto, A., Ohtani, T., Yamasue, H., Sakano, Y., Sasaki, T., Sadamatsu, M., Kasai, K., Iwanami, A., et al. (2003b). Hypoactivation of the prefrontal cortex during verbal fluency test in PTSD: a near-infrared spectroscopy study. Psychiatry Res. Neuroimaging 124, 1-10. https://doi.org/10.1016/S0925-4927(03)00093-3
  93. McKendrick, R., Parasuraman, R., Murtza, R., Formwalt, A., Baccus, W., Paczynski, M., and Ayaz, H. (2016). Into the wild: neuroergonomic differentiation of hand-held and augmented reality wearable displays during outdoor navigation with functional near infrared spectroscopy. Front. Hum. Neurosci. 10, 216.
  94. McKendrick, R., Mehta, R., Ayaz, H., Scheldrup, M., and Parasuraman, R. (2017). Prefrontal hemodynamics of physical activity and environmental complexity during cognitive work. Hum. Factors 59, 147-162. https://doi.org/10.1177/0018720816675053
  95. Mihara, M., Miyai, I., Hatakenaka, M., Kubota, K., and Sakoda, S. (2007). Sustained prefrontal activation during ataxic gait: a compensatory mechanism for ataxic stroke? Neuroimage 37, 1338-1345. https://doi.org/10.1016/j.neuroimage.2007.06.014
  96. Minagawa-Kawai, Y., Naoi, N., Kikuchi, N., Yamamoto, J., Nakamura, K., and Kojima, S. (2009). Cerebral laterality for phonemic and prosodic cue decoding in children with autism. Neuroreport 20, 1219-1224. https://doi.org/10.1097/WNR.0b013e32832fa65f
  97. Miyai, I., Yagura, H., Oda, I., Konishi, I., Eda, H., Suzuki, T., and Kubota, K. (2002). Premotor cortex is involved in restoration of gait in stroke. Ann. Neurol. 52, 188-194. https://doi.org/10.1002/ana.10274
  98. Monden, Y., Dan, I., Nagashima, M., Dan, H., Uga, M., Ikeda, T., Tsuzuki, D., Kyutoku, Y., Gunji, Y., Hirano, D., et al. (2015). Individual classification of ADHD children by right prefrontal hemodynamic responses during a go/no-go task as assessed by fNIRS. NeuroImage-Clin. 9, 1-12. https://doi.org/10.1016/j.nicl.2015.06.011
  99. Moser, S.J., Cutini, S., Weber, P., and Schroeter, M.L. (2009). Right prefrontal brain activation due to Stroop interference is altered in attention-deficit hyperactivity disorder - a functional near-infrared spectroscopy study. Psychiatry Res. Neuroimaging 173, 190-195. https://doi.org/10.1016/j.pscychresns.2008.10.003
  100. Muehlemann, T., Reefmann, N., Wechsler, B., Wolf, M., and Gygax, L. (2011). In vivo functional near-infrared spectroscopy measures mood-modulated cerebral responses to a positive emotional stimulus in sheep. Neuroimage 54, 1625-1633. https://doi.org/10.1016/j.neuroimage.2010.08.079
  101. Nagashima, M., Monden, Y., Dan, I., Dan, H., Mizutani, T., Tsuzuki, D., Kyutoku, Y., Gunji, Y., Hirano, D., Taniguchi, T., et al. (2014a). Neuropharmacological effect of atomoxetine on attention network in children with attention deficit hyperactivity disorder during oddball paradigms as assessed using functional near-infrared spectroscopy. Neurophotonics 1, 025007. https://doi.org/10.1117/1.NPh.1.2.025007
  102. Nagashima, M., Monden, Y., Dan, I., Dan, H., Tsuzuki, D., Mizutani, T., Kyutoku, Y., Gunji, Y., Hirano, D., Taniguchi, T., et al. (2014b). Acute neuropharmacological effects of atomoxetine on inhibitory control in ADHD children: a fNIRS study. NeuroImage-Clin. 6, 192-201. https://doi.org/10.1016/j.nicl.2014.09.001
  103. Nagashima, M., Monden, Y., Dan, I., Dan, H., Tsuzuki, D., Mizutani, T., Kyutoku, Y., Gunji, Y., Momoi, M.Y., Watanabe, E., et al. (2014c). Neuropharmacological effect of methylphenidate on attention network in children with attention deficit hyperactivity disorder during oddball paradigms as assessed using functional near-infrared spectroscopy. Neurophotonics 1, 015001. https://doi.org/10.1117/1.NPh.1.1.015001
  104. Negoro, H., Sawada, M., Iida, J., Ota, T., Tanaka, S., and Kishimoto, T. (2010). Prefrontal dysfunction in attention-deficit/hyperactivity disorder as measured by near-infrared spectroscopy. Child Psychiatry & Hum. Dev. 41, 193-203. https://doi.org/10.1007/s10578-009-0160-y
  105. Nieuwhof, F., Reelick, M.F., Maidan, I., Mirelman, A., Hausdorff, J.M., Rikkert, M.G.O., Bloem, B.R., Muthalib, M., and Claassen, J.A. (2016). Measuring prefrontal cortical activity during dual task walking in patients with Parkinson's disease: feasibility of using a new portable fNIRS device. Pilot and feasibility studies 2, 59. https://doi.org/10.1186/s40814-016-0099-2
  106. Nishimura, Y., Tanii, H., Fukuda, M., Kajiki, N., Inoue, K., Kaiya, H., Nishida, A., Okada, M., and Okazaki, Y. (2007). Frontal dysfunction during a cognitive task in drug-naive patients with panic disorder as investigated by multi-channel near-infrared spectroscopy imaging. Neurosci. Res. 59, 107-112. https://doi.org/10.1016/j.neures.2007.05.016
  107. Nishimura, Y., Tanii, H., Hara, N., Inoue, K., Kaiya, H., Nishida, A., Okada, M., and Okazaki, Y. (2009). Relationship between the prefrontal function during a cognitive task and the severity of the symptoms in patients with panic disorder: a multi-channel NIRS study. Psychiatry Res. Neuroimaging 172, 168-172. https://doi.org/10.1016/j.pscychresns.2009.01.001
  108. Noda, T., Yoshida, S., Matsuda, T., Okamoto, N., Sakamoto, K., Koseki, S., Numachi, Y., Matsushima, E., Kunugi, H., and Higuchi, T. (2012). Frontal and right temporal activations correlate negatively with depression severity during verbal fluency task: a multi-channel near-infrared spectroscopy study. J. Psychiatr. Res. 46, 905-912. https://doi.org/10.1016/j.jpsychires.2012.04.001
  109. Nozawa, T., Sasaki, Y., Sakaki, K., Yokoyama, R., and Kawashima, R. (2016). Interpersonal frontopolar neural synchronization in group communication: an exploration toward fNIRS hyperscanning of natural interactions. Neuroimage 133, 484-497. https://doi.org/10.1016/j.neuroimage.2016.03.059
  110. Ogawa, S., Lee, T.-M., Kay, A.R., and Tank, D.W. (1990). Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc. Natl. Acad. Sci. USA 87, 9868-9872. https://doi.org/10.1073/pnas.87.24.9868
  111. Ohta, H., Yamagata, B., Tomioka, H., Takahashi, T., Yano, M., Nakagome, K., and Mimura, M. (2008). Hypofrontality in panic disorder and major depressive disorder assessed by multi-channel near-infrared spectroscopy. Depress. Anxiety 25, 1053-1059. https://doi.org/10.1002/da.20463
  112. Oka, N., Yoshino, K., Yamamoto, K., Takahashi, H., Li, S., Sugimachi, T., Nakano, K., Suda, Y., and Kato, T. (2015). Greater activity in the frontal cortex on left curves: a vector-based fNIRS study of left and right curve driving. PLoS One 10, e0127594. https://doi.org/10.1371/journal.pone.0127594
  113. Osaka, N., Minamoto, T., Yaoi, K., Azuma, M., Shimada, Y.M., and Osaka, M. (2015). How two brains make one synchronized mind in the inferior frontal cortex: fNIRS-based hyperscanning during cooperative singing. Front. Psychol. 6, 1811.
  114. Packer, A.M., Russell, L.E., Dalgleish, H.W., and Häusser, M. (2015). Simultaneous all-optical manipulation and recording of neural circuit activity with cellular resolution in vivo. Nat. Methods 12, 140-146. https://doi.org/10.1038/nmeth.3217
  115. Piper, S.K., Krueger, A., Koch, S.P., Mehnert, J., Habermehl, C., Steinbrink, J., Obrig, H., and Schmitz, C.H. (2014). A wearable multichannel fNIRS system for brain imaging in freely moving subjects. Neuroimage 85, 64-71. https://doi.org/10.1016/j.neuroimage.2013.06.062
  116. Pu, S., Yamada, T., Yokoyama, K., Matsumura, H., Kobayashi, H., Sasaki, N., Mitani, H., Adachi, A., Kaneko, K., and Nakagome, K. (2011). A multi-channel near-infrared spectroscopy study of prefrontal cortex activation during working memory task in major depressive disorder. Neurosci. Res. 70, 91-97. https://doi.org/10.1016/j.neures.2011.01.001
  117. Pu, S.H., Nakagome, K., Yamada, T., Yokoyama, K., Matsumura, H., Mitani, H., Adachi, A., Nagata, I., and Kaneko, K. (2012). The relationship between the prefrontal activation during a verbal fluency task and stress-coping style in major depressive disorder: a nearinfrared spectroscopy study. J. Psychiatr. Res. 46, 1427-1434. https://doi.org/10.1016/j.jpsychires.2012.08.001
  118. Quan, W.X., Wu, T.N., Li, Z.H., Wang, Y.D., Dong, W.T., and Lv, B. (2015). Reduced prefrontal activation during a verbal fluency task in Chinese-speaking patients with schizophrenia as measured by nearinfrared spectroscopy. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 58, 51-58. https://doi.org/10.1016/j.pnpbp.2014.12.005
  119. Quaresima, V., Giosue, P., Roncone, R., Casacchia, M., and Ferrari, M. (2009). Prefrontal cortex dysfunction during cognitive tests evidenced by functional near-infrared spectroscopy. Psychiatry Res. Neuroimaging 171, 252-257. https://doi.org/10.1016/j.pscychresns.2008.02.002
  120. Roche‐Labarbe, N., Zaaimi, B., Mahmoudzadeh, M., Osharina, V., Wallois, A., Nehlig, A., Grebe, R., and Wallois, F. (2010). NIRS‐measured oxy‐and deoxyhemoglobin changes associated with EEG spike‐and‐wave discharges in a genetic model of absence epilepsy: the GAERS. Epilepsia 51, 1374-1384. https://doi.org/10.1111/j.1528-1167.2010.02574.x
  121. Roy, C.S., and Sherrington, C.S. (1890). On the regulation of the blood‐supply of the brain. J. Physiol. 11, 85-158. https://doi.org/10.1113/jphysiol.1890.sp000321
  122. Sakudo, A. (2016). Near-infrared spectroscopy for medical applications: current status and future perspectives. Clin. Chim. Acta 455, 181-188. https://doi.org/10.1016/j.cca.2016.02.009
  123. Schecklmann, M., Dresler, T., Beck, S., Jay, J.T., Febres, R., Haeusler, J., Jarczok, T.A., Reif, A., Plichta, M.M., Ehlis, A.C., et al. (2011a). Reduced prefrontal oxygenation during object and spatial visual working memory in unpolar and bipolar depression. Psychiatry Res. Neuroimaging 194, 378-384. https://doi.org/10.1016/j.pscychresns.2011.01.016
  124. Schecklmann, M., Schaldecker, M., Aucktor, S., Brast, J., Kirchgassner, K., Muhlberger, A., Warnke, A., Gerlach, M., Fallgatter, A.J., and Romanos, M. (2011b). Effects of methylphenidate on olfaction and frontal and temporal brain oxygenation in children with ADHD. J. Psychiatr. Res. 45, 1463-1470. https://doi.org/10.1016/j.jpsychires.2011.05.011
  125. Shimodera, S., Imai, Y., Kamimura, N., Morokuma, I., Fujita, H., Inoue, S., and Furukawa, T.A. (2012). Mapping hypofrontality during letter fluency task in schizophrenia: a multi-channel near-infrared spectroscopy study. Schizophr. Res. 136, 63-69. https://doi.org/10.1016/j.schres.2012.01.039
  126. Shortz, A.E., Pickens, A., Zheng, Q., and Mehta, R.K. (2015). The effect of cognitive fatigue on prefrontal cortex correlates of neuromuscular fatigue in older women. J. Neuroeng. Rehab. 12, 115. https://doi.org/10.1186/s12984-015-0108-3
  127. Takeshi, K., Nemoto, T., Fumoto, M., Arita, H., and Mizuno, M. (2010). Reduced prefrontal cortex activation during divergent thinking in schizophrenia: a multi-channel NIRS study. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 34, 1327-1332. https://doi.org/10.1016/j.pnpbp.2010.07.021
  128. Takizawa, R., Kasai, K., Kawakubo, Y., Marumo, K., Kawasaki, S., Yamasue, H., and Fukuda, M. (2008). Reduced frontopolar activation during verbal fluency task in schizophrenia: a multi-channel nearinfrared spectroscopy study. Schizophr. Res. 99, 250-262. https://doi.org/10.1016/j.schres.2007.10.025
  129. Tamura, R., Kitamura, H., Endo, T., Abe, R., and Someya, T. (2012). Decreased leftward bias of prefrontal activity in autism spectrum disorder revealed by functional near-infrared spectroscopy. Psychiatry Res. Neuroimaging 203, 237-240. https://doi.org/10.1016/j.pscychresns.2011.12.008
  130. Tang, H.H., Mai, X.Q., Wang, S., Zhu, C.Z., Krueger, F., and Liu, C. (2016). Interpersonal brain synchronization in the right temporoparietal junction during face-to-face economic exchange. Soc. Cogn. Affect. Neurosci. 11, 23-32. https://doi.org/10.1093/scan/nsv092
  131. Tsujimoto, S., Yasumura, A., Yamashita, Y., Torii, M., Kaga, M., and Inagaki, M. (2013). Increased prefrontal oxygenation related to distractor-resistant working memory in children with attentiondeficit/ hyperactivity disorder (ADHD). Child Psychiatry Hum. Dev. 44, 678-688. https://doi.org/10.1007/s10578-013-0361-2
  132. Urakawa, S., Takamoto, K., Ishikawa, A., Ono, T., and Nishijo, H. (2015). Selective medial prefrontal cortex responses during live mutual gaze interactions in human infants: an fNIRS study. Brain Topogr. 28, 691-701. https://doi.org/10.1007/s10548-014-0414-2
  133. Vannasing, P., Florea, O., Gonzalez-Frankenberger, B., Tremblay, J., Paquette, N., Safi, D., Wallois, F., Lepore, F., Beland, R., Lassonde, M., et al. (2016). Distinct hemispheric specializations for native and nonnative languages in one-day-old newborns identified by fNIRS. Neuropsychologia 84, 63-69. https://doi.org/10.1016/j.neuropsychologia.2016.01.038
  134. Villringer, A., and Dirnagl, U. (1995). Coupling of brain activity and cerebral blood flow: basis of functional neuroimaging. Cereb. Brain Metabol. Rev. 7, 240-276.
  135. Villringer, A., and Chance, B. (1997). Non-invasive optical spectroscopy and imaging of human brain function. Trends Neurosci. 20, 435-442. https://doi.org/10.1016/S0166-2236(97)01132-6
  136. Vogeli, S., Lutz, J., Wolf, M., Wechsler, B., and Gygax, L. (2014). Valence of physical stimuli, not housing conditions, affects behaviour and frontal cortical brain activity in sheep. Behav. Brain Res. 267, 144-155. https://doi.org/10.1016/j.bbr.2014.03.036
  137. Vogeli, S., Wolf, M., Wechsler, B., and Gygax, L. (2015a). Frontal brain activity and behavioral indicators of affective states are weakly affected by thermal stimuli in sheep living in different housing conditions. Front Vet. Sci. 2, 9.
  138. Vogeli, S., Wolf, M., Wechsler, B., and Gygax, L. (2015b). Housing conditions influence cortical and behavioural reactions of sheep in response to videos showing social interactions of different valence. Behav. Brain Res. 284, 69-76. https://doi.org/10.1016/j.bbr.2015.02.007
  139. von Luhmann, A., Herff, C., Heger, D., and Schultz, T. (2015). Toward a wireless open source instrument: functional near-infrared spectroscopy in mobile neuroergonomics and BCI applications. Front. Hum. Neurosci. 9, 617.
  140. von Luhmann, A., Wabnitz, H., Sander, T., and Muller, K.R. (2017). M3BA: a mobile, modular, multimodal biosignal acquisition architecture for miniaturized EEG-NIRS-based hybrid BCI and monitoring. IEEE Trans. Biomed. Eng. 64, 1199-1210. https://doi.org/10.1109/TBME.2016.2594127
  141. Wakita, M., Shibasaki, M., Ishizuka, T., Schnackenberg, J., Fujiawara, M., and Masataka, N. (2010). Measurement of neuronal activity in a macaque monkey in response to animate images using near-infrared spectroscopy. Front. Behav. Neurosci. 4, 31.
  142. Watanabe, A., and Kato, T. (2004). Cerebrovascular response to cognitive tasks in patients with schizophrenia measured by nearinfrared spectroscopy. Schizophr. Bull. 30, 435-444. https://doi.org/10.1093/oxfordjournals.schbul.a007090
  143. Weber, P., Lutschg, J., and Fahnenstich, H. (2005). Cerebral hemodynamic changes in response to an executive function task in children with attention-deficit hyperactivity disorder measured by near-infrared spectroscopy. J. Dev. Behav. Pediatr. 26, 105-111. https://doi.org/10.1097/00004703-200504000-00005
  144. Wolf, T., Lindauer, U., Reuter, U., Back, T., Villringer, A., Einhaupl, K., and Dirnagl, U. (1997). Noninvasive near infrared spectroscopy monitoring of regional cerebral blood oxygenation changes during peri-infarct depolarizations in focal cerebral ischemia in the rat. J. Cereb. Blood Flow Metab. 17, 950-954. https://doi.org/10.1097/00004647-199709000-00004
  145. Xiao, T., Xiao, Z., Ke, X.Y., Hong, S.S., Yang, H.Y., Su, Y.L., Chu, K.K., Xiao, X., Shen, J.Y., and Liu, Y.J. (2012). Response inhibition impairment in high functioning autism and attention deficit hyperactivity disorder: evidence from near-infrared spectroscopy Data. PLoS One 7, e46569. https://doi.org/10.1371/journal.pone.0046569
  146. Xu, L.W., Wang, B.T., Xu, G.C., Wang, W., Liu, Z.A., and Li, Z.Y. (2017). Functional connectivity analysis using fNIRS in healthy subjects during prolonged simulated driving. Neurosci. Lett. 640, 21-28. https://doi.org/10.1016/j.neulet.2017.01.018
  147. Yasumura, A., Kokubo, N., Yamamoto, H., Yasumura, Y., Nakagawa, E., Kaga, M., Hiraki, K., and Inagaki, M. (2014). Neurobehavioral and hemodynamic evaluation of Stroop and reverse Stroop interference in children with attention-deficit/hyperactivity disorder. Brain Dev. 36, 97-106. https://doi.org/10.1016/j.braindev.2013.01.005
  148. Zaidi, A.D., Munk, M.H., Schmidt, A., Risueno-Segovia, C., Bernard, R., Fetz, E., Logothetis, N., Birbaumer, N., and Sitaram, R. (2015). Simultaneous epidural functional near-infrared spectroscopy and cortical electrophysiology as a tool for studying local neurovascular coupling in primates. Neuroimage 120, 394-399. https://doi.org/10.1016/j.neuroimage.2015.07.019

Cited by

  1. Applications of Functional Near-Infrared Spectroscopy (fNIRS) Neuroimaging in Exercise–Cognition Science: A Systematic, Methodology-Focused Review vol.7, pp.12, 2018, https://doi.org/10.3390/jcm7120466
  2. Existence of Initial Dip for BCI: An Illusion or Reality vol.12, pp.1662-5218, 2018, https://doi.org/10.3389/fnbot.2018.00069
  3. Effect of Scalp Hair Follicles on NIRS Quantification by Monte Carlo Simulation and Visible Chinese Human Dataset vol.10, pp.5, 2018, https://doi.org/10.1109/JPHOT.2018.2865427
  4. Prefrontal modulation during chewing performance in occlusal dysesthesia patients: a functional near-infrared spectroscopy study pp.1436-3771, 2018, https://doi.org/10.1007/s00784-018-2534-7