Application of Functional Near-Infrared Spectroscopy to the Study of Brain Function in Humans and Animal Models

  • Kim, Hak Yeong (Department of Brain and Cognitive Sciences, DGIST) ;
  • Seo, Kain (Department of Brain and Cognitive Sciences, DGIST) ;
  • Jeon, Hong Jin (Department of Psychiatry, Depression Center, Samsung Medical Center, Sungkyunkwan University, School of Medicine) ;
  • Lee, Unjoo (Department of Electronic Engineering, Hallym University) ;
  • Lee, Hyosang (Department of Brain and Cognitive Sciences, DGIST)
  • Received : 2017.07.31
  • Accepted : 2017.08.03
  • Published : 2017.08.31


Functional near-infrared spectroscopy (fNIRS) is a noninvasive optical imaging technique that indirectly assesses neuronal activity by measuring changes in oxygenated and deoxygenated hemoglobin in tissues using near-infrared light. fNIRS has been used not only to investigate cortical activity in healthy human subjects and animals but also to reveal abnormalities in brain function in patients suffering from neurological and psychiatric disorders and in animals that exhibit disease conditions. Because of its safety, quietness, resistance to motion artifacts, and portability, fNIRS has become a tool to complement conventional imaging techniques in measuring hemodynamic responses while a subject performs diverse cognitive and behavioral tasks in test settings that are more ecologically relevant and involve social interaction. In this review, we introduce the basic principles of fNIRS and discuss the application of this technique in human and animal studies.


brain recording;functional neuroimaging;fNIRS;functional near-infrared spectroscopy;neurovascular coupling


Supported by : National Research Foundation of Korea (NRF), KBRI


  1. Abookasis, D., Shochat, A., and Mathews, M.S. (2013). Monitoring hemodynamic and morphologic responses to closed head injury in a mouse model using orthogonal diffuse near-infrared light reflectance spectroscopy. J. Biomed. Optics 18, 045003.
  2. Akiyoshi, J., Hieda, K., Aoki, Y., and Nagayama, H. (2003). Frontal brain hypoactivity as a biological substrate of anxiety in patients with panic disorders. Neuropsychobiology 47, 165-170.
  3. Al-Yahya, E., Johansen-Berg, H., Kischka, U., Zarei, M., Cockburn, J., and Dawes, H. (2016). Prefrontal cortex activation while walking under dual-task conditions in stroke: a multimodal imaging study. neurorehabil. Neural Repair 30, 591-599.
  4. Altvater-Mackensen, N., and Grossmann, T. (2016). The role of left inferior frontal cortex during audiovisual speech perception in infants. Neuroimage 133, 14-20.
  5. Andreu-Perez, J., Leff, D.R., Shetty, K., Darzi, A., and Yang, G.-Z. (2016). Disparity in frontal lobe connectivity on a complex bimanual motor task aids in classification of operator skill level. Brain Connectivity 6, 375-388.
  6. Araki, A., Ikegami, M., Okayama, A., Matsumoto, N., Takahashi, S., Azuma, H., and Takahashi, M. (2015). Improved prefrontal activity in AD/HD children treated with atomoxetine: a NIRS study. Brain Dev. 37, 76-87.
  7. Ardestani, A., Shen, W., Darvas, F., Toga, A.W., and Fuster, J.M. (2016). Modulation of frontoparietal neurovascular dynamics in working memory. J. Cogn. Neurosci. 28, 379-401.
  8. Ayaz, H., Onaral, B., Izzetoglu, K., Shewokis, P.A., McKendrick, R., and Parasuraman, R. (2013). Continuous monitoring of brain dynamics with functional near infrared spectroscopy as a tool for neuroergonomic research: empirical examples and a technological development. Front. Hum. Neurosci. 7, 871.
  9. Azechi, M., Iwase, M., Ikezawa, K., Takahashi, H., Canuet, L., Kurimoto, R., Nakahachi, T., Ishii, R., Fukumoto, M., Ohi, K., et al. (2010). Discriminant analysis in schizophrenia and healthy subjects using prefrontal activation during frontal lobe tasks: a near-infrared spectroscopy. Schizophr. Res. 117, 52-60.
  10. Baker, J.M., Liu, N., Cui, X., Vrticka, P., Saggar, M., Hosseini, S.M.H., and Reiss, A.L. (2016). Sex differences in neural and behavioral signatures of cooperation revealed by fNIRS hyperscanning. Sci. Rep. 6, 26492.
  11. Boas, D.A., Elwell, C.E., Ferrari, M., and Taga, G. (2014). Twenty years of functional near-infrared spectroscopy: introduction for the special issue. Neuroimage 85, 1-5.
  12. Bonner, R., Nossal, R., Havlin, S., and Weiss, G. (1987). Model for photon migration in turbid biological media. JOSA A 4, 423-432.
  13. Bunce, S.C., Izzetoglu, M., Izzetoglu, K., Onaral, B., and Pourrezaei, K. (2006). Functional near-infrared spectroscopy. IEEE Eng. Med. Biol. Mag. 25, 54-62.
  14. Carius, D., Andra, C., Clauss, M., Ragert, P., Bunk, M., and Mehnert, J. (2016). Hemodynamic response alteration as a function of task complexity and expertise - an fNIRS study in jugglers. Front. Hum. Neurosci. 10, 126.
  15. Carrieri, M., Petracca, A., Lancia, S., Moro, S.B., Brigadoi, S., Spezialetti, M., Ferrari, M., Placidi, G., and Quaresima, V. (2016). Prefrontal cortex activation upon a demanding virtual hand-controlled task: a new frontier for neuroergonomics. Front. Hum. Neurosci. 10, 53.
  16. Chance, B., Zhuang, Z., UnAh, C., Alter, C., and Lipton, L. (1993). Cognition-activated low-frequency modulation of light absorption in human brain. Proc. Natl. Acad. Sci. USA 90, 3770-3774.
  17. Chang, G., Wang, K., Hsu, C., and Chen, J. (2007). Development of functional near infrared spectroscopy system for assessing cerebral hemodynamics of rats with ischemic stroke. J. Med. Biol. Eng. 27, 207.
  18. Choe, J., Coffman, B.A., Bergstedt, D.T., Ziegler, M.D., and Phillips, M.E. (2016). Transcranial direct current stimulation modulates neuronal activity and learning in pilot training. Front. Hum. Neurosci. 10, 34.
  19. Chou, P.H., Lin, W.H., Lin, C.C., Hou, P.H., Li, W.R., Hung, C.C., Lin, C.P., Lan, T.H., and Chan, C.H. (2015). Duration of untreated psychosis and brain function during verbal fluency testing in firstepisode schizophrenia: a near-infrared spectroscopy study. Sci. Rep. 5, 18069.
  20. Crespi, F., Bandera, A., Donini, M., Heidbreder, C., and Rovati, L. (2005). Non-invasive in vivo infrared laser spectroscopy to analyse endogenous oxy-haemoglobin, deoxy-haemoglobin, and blood volume in the rat CNS. J. Neurosci. Methods 145, 11-22.
  21. Cui, G., Jun, S.B., Jin, X., Luo, G., Pham, M.D., Lovinger, D.M., Vogel, S.S., and Costa, R.M. (2014). Deep brain optical measurements of cell type-specific neural activity in behaving mice. Nat. Protocols 9, 1213.
  22. Cutini, S., and Brigadoi, S. (2014). Unleashing the future potential of functional near-infrared spectroscopy in brain sciences. J. Neurosci. Methods 232, 152-156.
  23. Di, H., and Zhang, X. (2017). Deception detection by hybrid-pair wireless fNIRS system. Int. J. Dig. Crime Forensic. (IJDCF) 9, 15-24.
  24. Dommer, L., Jager, N., Scholkmann, F., Wolf, M., and Holper, L. (2012). Between-brain coherence during joint n-back task performance: a twoperson functional near-infrared spectroscopy study. Behav. Brain Res. 234, 212-222.
  25. Egashira, K., Matsuo, K., Nakashima, M., Watanuki, T., Harada, K., Nakano, M., Matsubara, T., Takahashi, K., and Watanabe, Y. (2015). Blunted brain activation in patients with schizophrenia in response to emotional cognitive inhibition: a functional near-infrared spectroscopy study. Schizophr. Res. 162, 196-204.
  26. Ehlis, A.C., Herrmann, M.J., Plichta, M.M., and Fallgatter, A.J. (2007). Cortical activation during two verbal fluency tasks in schizophrenic patients and healthy controls as assessed by multi-channel nearinfrared spectroscopy. Psychiatry Res. Neuroimaging 156, 1-13.
  27. Faraone, S.V., Perlis, R.H., Doyle, A.E., Smoller, J.W., Goralnick, J.J., Holmgren, M.A., and Sklar, P. (2005). Molecular genetics of attentiondeficit/ hyperactivity disorder. Biol. Psychiatry 57, 1313-1323.
  28. Ferrari, M., and Quaresima, V. (2012). A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. Neuroimage 63, 921-935.
  29. Fox, P.T., and Raichle, M.E. (1986). Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc. Natl. Acad. Sci. USA 83, 1140-1144.
  30. Fox, P.T., Raichle, M.E., Mintun, M.A., and Dence, C. (1988). Nonoxidative glucose consumption during focal physiologic neural activity. Science 241, 462-464.
  31. Foy, H.J., Runham, P., and Chapman, P. (2016). Prefrontal cortex activation and young driver behaviour: a fNIRS study. PLoS One 11, e0156512.
  32. Franceschini, M.A., Nissila, I., Wu, W., Diamond, S.G., Bonmassar, G., and Boas, D.A. (2008). Coupling between somatosensory evoked potentials and hemodynamic response in the rat. Neuroimage 41, 189-203.
  33. Fujimoto, H., Mihara, M., Hattori, N., Hatakenaka, M., Kawano, T., Yagura, H., Miyai, I., and Mochizuki, H. (2014). Cortical changes underlying balance recovery in patients with hemiplegic stroke. Neuroimage 85, 547-554.
  34. Fuster, J., Guiou, M., Ardestani, A., Cannestra, A., Sheth, S., Zhou, Y.D., Toga, A., and Bodner, M. (2005). Near-infrared spectroscopy (NIRS) in cognitive neuroscience of the primate brain. Neuroimage 26, 215-220.
  35. Gateau, T., Durantin, G., Lancelot, F., Scannella, S., and Dehais, F. (2015). Real-time state estimation in a flight simulator using fNIRS. PLoS One 10, e0121279.
  36. Ghosh, K.K., Burns, L.D., Cocker, E.D., Nimmerjahn, A., Ziv, Y., El Gamal, A., and Schnitzer, M.J. (2011). Miniaturized integration of a fluorescence microscope. Nat. Methods 8, 871-878.
  37. Girven, K.S., and Sparta, D.R. (2017). Probing deep brain circuitry: new advances in in vivo calcium measurement strategies. ACS Chem. Neurosci. 8, 243-251.
  38. Grandjean, J., Schroeter, A., Batata, I., and Rudin, M. (2014). Optimization of anesthesia protocol for resting-state fMRI in mice based on differential effects of anesthetics on functional connectivity patterns. Neuroimage 102, 838-847.
  39. Gratton, G., Maier, J.S., Fabiani, M., Mantulin, W.W., and Gratton, E. (1994). Feasibility of intracranial near‐infrared optical scanning. Psychophysiology 31, 211-215.
  40. Guldimann, K., Vogeli, S., Wolf, M., Wechsler, B., and Gygax, L. (2015). Frontal brain deactivation during a non-verbal cognitive judgement bias test in sheep. Brain Cogn. 93, 35-41.
  41. Gygax, L., Reefmann, N., Pilheden, T., Scholkmann, F., and Keeling, L. (2015). Dog behavior but not frontal brain reaction changes in repeated positive interactions with a human: a non-invasive pilot study using functional near-infrared spectroscopy (fNIRS). Behav. Brain Res. 281, 172-176.
  42. Gygax, L., Reefmann, N., Wolf, M., and Langbein, J. (2013). Prefrontal cortex activity, sympatho-vagal reaction and behaviour distinguish between situations of feed reward and frustration in dwarf goats. Behav. Brain Res 239, 104-114.
  43. Han, C.-H., Song, H., Kang, Y.-G., Kim, B.-M., and Im, C.-H. (2014). Hemodynamic responses in rat brain during transcranial direct current stimulation: a functional near-infrared spectroscopy study. Biomed. Optics Exp. 5, 1812-1821.
  44. Harmat, L., de Manzano, O., Theorell, T., Hogman, L., Fischer, H., and Ullen, F. (2015). Physiological correlates of the flow experience during computer game playing. Int. J. Psychophysiol. 97, 1-7.
  45. He, J.-W., Tian, F., Liu, H., and Peng, Y.B. (2012). Cerebrovascular responses of the rat brain to noxious stimuli as examined by functional near-infrared whole brain imaging. J. Neurophysiol. 107, 2853-2865.
  46. Helmchen, F. (2009). Two-photon functional imaging of neuronal activity. In Frostig, R.D., editor., In vivo optical imaging of brain function., 2nd ed., Boca Raton (FL) (CRC Press/Taylor & Francis)., Chapter 2.
  47. Herold, F., Orlowski, K., Bormel, S., and Muller, N.G. (2017). Cortical activation during balancing on a balance board. Hum. Mov. Sci. 51, 51-58.
  48. Herrmann, M.J., Ehlis, A.C., and Fallgatter, A.J. (2004). Bilaterally reduced frontal activation during a verbal fluency task in depressed patients as measured by near-infrared spectroscopy. J. Neuropsychiatr. Clin. Neurosci. 16, 170-175.
  49. Holper, L., and Wolf, M. (2011). Single-trial classification of motor imagery differing in task complexity: a functional near-infrared spectroscopy study. J. Neuroeng. Rehabil. 8, 34.
  50. Holper, L., Muehlemann, T., Scholkmann, F., Eng, K., Kiper, D., and Wolf, M. (2010). Testing the potential of a virtual reality neurorehabilitation system during performance of observation, imagery and imitation of motor actions recorded by wireless functional nearinfrared spectroscopy (fNIRS). J. Neuroeng. Rehabil. 7, 57.
  51. Holper, L., Shalom, D.E., Wolf, M., and Sigman, M. (2011). Understanding inverse oxygenation responses during motor imagery: a functional near-infrared spectroscopy study. Eur. J. Neurosci. 33, 2318-2328.
  52. Holper, L., Kobashi, N., Kiper, D., Scholkmann, F., Wolf, M., and Eng, K. (2012a). Trial-to-trial variability differentiates motor imagery during observation between low versus high responders: a functional nearinfrared spectroscopy study. Behav. Brain Res. 229, 29-40.
  53. Holper, L., Scholkmann, F., Shalom, D.E., and Wolf, M. (2012b). Extension of mental preparation positively affects motor imagery as compared to motor execution: a functional near-infrared spectroscopy study. Cortex 48, 593-603.
  54. Holper, L., Scholkmann, F., and Wolf, M. (2012c). Between-brain connectivity during imitation measured by fNIRS. Neuroimage 63, 212-222.
  55. Holper, L., Goldin, A.P., Shalom, D.E., Battro, A.M., Wolf, M., and Sigman, M. (2013). The teaching and the learning brain: a cortical hemodynamic marker of teacher-student interactions in the Socratic dialog. Int. J. Edu. Res. 59, 1-10.
  56. Holper, L., Wolf, M., and Tobler, P.N. (2014). Comparison of functional near-infrared spectroscopy and electrodermal activity in assessing objective versus subjective risk during risky financial decisions. Neuroimage 84, 833-842.
  57. Hoshi, Y., Kobayashi, N., and Tamura, M. (1985). Interpretation of near-infrared spectroscopy signals: a study with a newly developed perfused rat brain model. J. Appl. Physiol. 90, 1657-1662.
  58. Ichikawa, H., Nakato, E., Kanazawa, S., Shimamura, K., Sakuta, Y., Sakuta, R., Yamaguchi, M.K., and Kakigi, R. (2014). Hemodynamic response of children with attention-deficit and hyperactive disorder (ADHD) to emotional facial expressions. Neuropsychologia 63, 51-58.
  59. Ikezawa, K., Iwase, M., Ishii, R., Azechi, M., Canuet, L., Ohi, K., Yasuda, Y., Iike, N., Kurimoto, R., Takahashi, H., et al. (2009). Impaired regional hemodynamic response in schizophrenia during multiple prefrontal activation tasks: a two-channel near-infrared spectroscopy study. Schizophr. Res. 108, 93-103.
  60. Im, C.-H., Jung, Y.-J., Lee, S., Koh, D., Kim, D.-W., and Kim, B.-M. (2010). Estimation of directional coupling between cortical areas using near-Infrared spectroscopy (NIRS). Opt. Express 18, 5730-5739.
  61. Inoue, Y., Sakihara, K., Gunji, A., Ozawa, H., Kimiya, S., Shinoda, H., Kaga, M., and Inagaki, M. (2012). Reduced prefrontal hemodynamic response in children with ADHD during the go/nogo task: a NIRS study. Neuroreport 23, 55-60.
  62. Irani, F., Platek, S.M., Bunce, S., Ruocco, A.C., and Chute, D. (2007). Functional near infrared spectroscopy (fNIRS): an emerging neuroimaging technology with important applications for the study of brain disorders. Clin. Neuropsychol. 21, 9-37.
  63. Ishii-Takahashi, A., Takizawa, R., Nishimura, Y., Kawakubo, Y., Hamada, K., Okuhata, S., Kawasaki, S., Kuwabara, H., Shimada, T., Todokoro, A., et al. (2015). Neuroimaging-aided prediction of the effect of methylphenidate in children with attention-deficit hyperactivity disorder: a randomized controlled trial. Neuropsychopharmacology 40, 2676-2685.
  64. Iwanaga, R., Tanaka, G., Nakane, H., Honda, S., Imamura, A., and Ozawa, H. (2013). Usefulness of near-infrared spectroscopy to detect brain dysfunction in children with autism spectrum disorder when inferring the mental state of others. Psychiatry Clin. Neurosci. 67, 203-209.
  65. Jiang, J., Dai, B.H., Peng, D.L., Zhu, C.Z., Liu, L., and Lu, C.M. (2012). Neural Synchronization during face-to-face communication. J. Neurosci. 32, 16064-16069.
  66. Jobsis, F.F. (1977). Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 198, 1264-1267.
  67. Jonckers, E., Van Audekerke, J., De Visscher, G., Van der Linden, A., and Verhoye, M. (2011). Functional connectivity fMRI of the rodent brain: comparison of functional connectivity networks in rat and mouse. PLoS One 6, e18876.
  68. Kajiume, A., Aoyama-Setoyama, S., Saito-Hori, Y., Ishikawa, N., and Kobayashi, M. (2013). Reduced brain activation during imitation and observation of others in children with pervasive developmental disorder: a pilot study. Behav. Brain Funct. 9, 21.
  69. Kashou, N.H., Giacherio, B.M., Nahhas, R.W., and Jadcherla, S.R. (2016). Hand-grasping and finger tapping induced similar functional near-infrared spectroscopy cortical responses. Neurophotonics 3, 025006.
  70. Kim, C.K., Yang, S.J., Pichamoorthy, N., Young, N.P., Kauvar, I., Jennings, J.H., Lerner, T.N., Berndt, A., Lee, S.Y., and Ramakrishnan, C. (2016). Simultaneous fast measurement of circuit dynamics at multiple sites across the mammalian brain. Nat. Methods 13, 325-328.
  71. Kita, Y., Gunji, A., Inoue, Y., Goto, T., Sakihara, K., Kaga, M., Inagaki, M., and Hosokawa, T. (2011). Self-face recognition in children with autism spectrum disorders: a near-infrared spectroscopy study. Brain Dev. 33, 494-503.
  72. Kleinschmidt, A., Obrig, H., Requardt, M., Merboldt, K.-D., Dirnagl, U., Villringer, A., and Frahm, J. (1996). Simultaneous recording of cerebral blood oxygenation changes during human brain activation by magnetic resonance imaging and near-infrared spectroscopy. J. Cereb. Blood Flow Metabol. 16, 817-826.
  73. Kochel, A., Schongassner, F., Feierl-Gsodam, S., and Schienle, A. (2015). Processing of affective prosody in boys suffering from attention deficit hyperactivity disorder: a near-infrared spectroscopy study. Soc. Neurosci. 10, 583-591.
  74. Koike, S., Takizawa, R., Nishimura, Y., Takano, Y., Takayanagi, Y., Kinou, M., Araki, T., Harima, H., Fukuda, M., Okazaki, Y., et al. (2011). Different hemodynamic response patterns in the prefrontal cortical sub-regions according to the clinical stages of psychosis. Schizophr. Res. 132, 54-61.
  75. Kubota, Y., Toichi, M., Shimizu, M., Mason, R.A., Coconcea, C.M., Findling, R.L., Yamamoto, K., and Calabrese, J.R. (2005). Prefrontal activation during verbal fluency tests in schizophrenia-a nearinfrared spectroscopy (NIRS) study. Schizophr. Res. 77, 65-73.
  76. Kuwabara, H., Kasai, K., Takizawa, R., Kawakubo, Y., Yamasue, H., Rogers, M.A., Ishijima, M., Watanabe, K., and Kato, N. (2006). Decreased prefrontal activation during letter fluency task in adults with pervasive developmental disorders: a near-infrared spectroscopy study. Behav. Brain Res. 172, 272-277.
  77. Lee, S., Lee, M., Koh, D., Kim, B.-M., and Choi, J.H. (2010). Cerebral hemodynamic responses to seizure in the mouse brain: simultaneous near-infrared spectroscopy-electroencephalography study. J. Biomed. Opt. 15, 037010-037018.
  78. Lee, S., Koh, D., Jo, A., Lim, H.Y., Jung, Y.J., Kim, C.K., Seo, Y., Im, C.H., Kim, B.M., and Suh, M. (2012). Depth-dependent cerebral hemodynamic responses following direct cortical electrical stimulation (DCES) revealed by in vivo dual-optical imaging techniques. Opt. Express. 20, 6932-6943.
  79. Lee, Y.A., Pollet, V., Kato, A., and Goto, Y. (2017). Prefrontal cortical activity associated with visual stimulus categorization in non-human primates measured with near-infrared spectroscopy. Behav. Brain Res. 317, 327-331.
  80. Leon-Carrion, J., and Leon-Dominguez, U. (2012). Functional nearinfrared spectroscopy (fNIRS): principles and neuroscientific applications. Neuroimaging-Methods (InTech), 47-74.
  81. Liu, N., Cliffer, S., Pradhan, A.H., Lightbody, A., Hall, S.S., and Reiss, A.L. (2017). Optical-imaging-based neurofeedback to enhance therapeutic intervention in adolescents with autism: methodology and initial data. Neurophotonics 4, 011003.
  82. Lloyd-Fox, S., Blasi, A., and Elwell, C. (2010). Illuminating the developing brain: the past, present and future of functional near infrared spectroscopy. Neurosci. Biobehav. Rev. 34, 269-284.
  83. Lloyd-Fox, S., Szeplaki-Kollod, B., Yin, J., and Csibra, G. (2015). Are you talking to me? Neural activations in 6-month-old infants in response to being addressed during natural interactions. Cortex 70, 35-48.
  84. Macnab, A., and Shadgan, B. (2012). Biomedical applications of wireless continuous wave near infrared spectroscopy. Biomed. Spectroscopy and Imaging 1, 205-222.
  85. Mahmoudzadeh, M., Dehaene-Lambertz, G., and Wallois, F. (2017). Electrophysiological and hemodynamic mismatch responses in rats listening to human speech syllables. PLoS One 12, e0173801.
  86. Maidan, I., Bernad-Elazari, H., Gazit, E., Giladi, N., Hausdorff, J.M., and Mirelman, A. (2015). Changes in oxygenated hemoglobin link freezing of gait to frontal activation in patients with Parkinson disease: an fNIRS study of transient motor-cognitive failures. J. Neurol. 262, 899-908.
  87. Maidan, I., Nieuwhof, F., Bernad-Elazari, H., Reelick, M.F., Bloem, B.R., Giladi, N., Deutsch, J.E., Hausdorff, J.M., Claassen, J.A.H., and Mirelman, A. (2016). The role of the frontal lobe in complex walking among patients with Parkinson's disease and healthy older adults: an fNIRS study. Neurorehabil. Neural Repair 30, 963-971.
  88. Martin, C., Zheng, Y., Sibson, N.R., Mayhew, J.E., and Berwick, J. (2013). Complex spatiotemporal haemodynamic response following sensory stimulation in the awake rat. Neuroimage 66, 1-8.
  89. Marumo, K., Takizawa, R., Kinou, M., Kawasaki, S., Kawakubo, Y., Fukuda, M., and Kasai, K. (2014). Functional abnormalities in the left ventrolateral prefrontal cortex during a semantic fluency task, and their association with thought disorder in patients with schizophrenia. Neuroimage 85, 518-526.
  90. Matsuo, K., Kato, N., and Kato, T. (2002). Decreased cerebral haemodynamic response to cognitive and physiological tasks in mood disorders as shown by near-infrared spectroscopy. Psychol. Med. 32, 1029-1037.
  91. Matsuo, K., Kato, T., Taneichi, K., Matsumoto, A., Ohtani, T., Hamamoto, T., Yamasue, H., Sakano, Y., Sasaki, T., Sadamatsu, M., et al. (2003a). Activation of the prefrontal cortex to trauma-related stimuli measured by near-infrared spectroscopy in posttraumatic stress disorder due to terrorism. Psychophysiology 40, 492-500.
  92. Matsuo, K., Taneichi, K., Matsumoto, A., Ohtani, T., Yamasue, H., Sakano, Y., Sasaki, T., Sadamatsu, M., Kasai, K., Iwanami, A., et al. (2003b). Hypoactivation of the prefrontal cortex during verbal fluency test in PTSD: a near-infrared spectroscopy study. Psychiatry Res. Neuroimaging 124, 1-10.
  93. McKendrick, R., Parasuraman, R., Murtza, R., Formwalt, A., Baccus, W., Paczynski, M., and Ayaz, H. (2016). Into the wild: neuroergonomic differentiation of hand-held and augmented reality wearable displays during outdoor navigation with functional near infrared spectroscopy. Front. Hum. Neurosci. 10, 216.
  94. McKendrick, R., Mehta, R., Ayaz, H., Scheldrup, M., and Parasuraman, R. (2017). Prefrontal hemodynamics of physical activity and environmental complexity during cognitive work. Hum. Factors 59, 147-162.
  95. Mihara, M., Miyai, I., Hatakenaka, M., Kubota, K., and Sakoda, S. (2007). Sustained prefrontal activation during ataxic gait: a compensatory mechanism for ataxic stroke? Neuroimage 37, 1338-1345.
  96. Minagawa-Kawai, Y., Naoi, N., Kikuchi, N., Yamamoto, J., Nakamura, K., and Kojima, S. (2009). Cerebral laterality for phonemic and prosodic cue decoding in children with autism. Neuroreport 20, 1219-1224.
  97. Miyai, I., Yagura, H., Oda, I., Konishi, I., Eda, H., Suzuki, T., and Kubota, K. (2002). Premotor cortex is involved in restoration of gait in stroke. Ann. Neurol. 52, 188-194.
  98. Monden, Y., Dan, I., Nagashima, M., Dan, H., Uga, M., Ikeda, T., Tsuzuki, D., Kyutoku, Y., Gunji, Y., Hirano, D., et al. (2015). Individual classification of ADHD children by right prefrontal hemodynamic responses during a go/no-go task as assessed by fNIRS. NeuroImage-Clin. 9, 1-12.
  99. Moser, S.J., Cutini, S., Weber, P., and Schroeter, M.L. (2009). Right prefrontal brain activation due to Stroop interference is altered in attention-deficit hyperactivity disorder - a functional near-infrared spectroscopy study. Psychiatry Res. Neuroimaging 173, 190-195.
  100. Muehlemann, T., Reefmann, N., Wechsler, B., Wolf, M., and Gygax, L. (2011). In vivo functional near-infrared spectroscopy measures mood-modulated cerebral responses to a positive emotional stimulus in sheep. Neuroimage 54, 1625-1633.
  101. Nagashima, M., Monden, Y., Dan, I., Dan, H., Mizutani, T., Tsuzuki, D., Kyutoku, Y., Gunji, Y., Hirano, D., Taniguchi, T., et al. (2014a). Neuropharmacological effect of atomoxetine on attention network in children with attention deficit hyperactivity disorder during oddball paradigms as assessed using functional near-infrared spectroscopy. Neurophotonics 1, 025007.
  102. Nagashima, M., Monden, Y., Dan, I., Dan, H., Tsuzuki, D., Mizutani, T., Kyutoku, Y., Gunji, Y., Hirano, D., Taniguchi, T., et al. (2014b). Acute neuropharmacological effects of atomoxetine on inhibitory control in ADHD children: a fNIRS study. NeuroImage-Clin. 6, 192-201.
  103. Nagashima, M., Monden, Y., Dan, I., Dan, H., Tsuzuki, D., Mizutani, T., Kyutoku, Y., Gunji, Y., Momoi, M.Y., Watanabe, E., et al. (2014c). Neuropharmacological effect of methylphenidate on attention network in children with attention deficit hyperactivity disorder during oddball paradigms as assessed using functional near-infrared spectroscopy. Neurophotonics 1, 015001.
  104. Negoro, H., Sawada, M., Iida, J., Ota, T., Tanaka, S., and Kishimoto, T. (2010). Prefrontal dysfunction in attention-deficit/hyperactivity disorder as measured by near-infrared spectroscopy. Child Psychiatry & Hum. Dev. 41, 193-203.
  105. Nieuwhof, F., Reelick, M.F., Maidan, I., Mirelman, A., Hausdorff, J.M., Rikkert, M.G.O., Bloem, B.R., Muthalib, M., and Claassen, J.A. (2016). Measuring prefrontal cortical activity during dual task walking in patients with Parkinson's disease: feasibility of using a new portable fNIRS device. Pilot and feasibility studies 2, 59.
  106. Nishimura, Y., Tanii, H., Fukuda, M., Kajiki, N., Inoue, K., Kaiya, H., Nishida, A., Okada, M., and Okazaki, Y. (2007). Frontal dysfunction during a cognitive task in drug-naive patients with panic disorder as investigated by multi-channel near-infrared spectroscopy imaging. Neurosci. Res. 59, 107-112.
  107. Nishimura, Y., Tanii, H., Hara, N., Inoue, K., Kaiya, H., Nishida, A., Okada, M., and Okazaki, Y. (2009). Relationship between the prefrontal function during a cognitive task and the severity of the symptoms in patients with panic disorder: a multi-channel NIRS study. Psychiatry Res. Neuroimaging 172, 168-172.
  108. Noda, T., Yoshida, S., Matsuda, T., Okamoto, N., Sakamoto, K., Koseki, S., Numachi, Y., Matsushima, E., Kunugi, H., and Higuchi, T. (2012). Frontal and right temporal activations correlate negatively with depression severity during verbal fluency task: a multi-channel near-infrared spectroscopy study. J. Psychiatr. Res. 46, 905-912.
  109. Nozawa, T., Sasaki, Y., Sakaki, K., Yokoyama, R., and Kawashima, R. (2016). Interpersonal frontopolar neural synchronization in group communication: an exploration toward fNIRS hyperscanning of natural interactions. Neuroimage 133, 484-497.
  110. Ogawa, S., Lee, T.-M., Kay, A.R., and Tank, D.W. (1990). Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc. Natl. Acad. Sci. USA 87, 9868-9872.
  111. Ohta, H., Yamagata, B., Tomioka, H., Takahashi, T., Yano, M., Nakagome, K., and Mimura, M. (2008). Hypofrontality in panic disorder and major depressive disorder assessed by multi-channel near-infrared spectroscopy. Depress. Anxiety 25, 1053-1059.
  112. Oka, N., Yoshino, K., Yamamoto, K., Takahashi, H., Li, S., Sugimachi, T., Nakano, K., Suda, Y., and Kato, T. (2015). Greater activity in the frontal cortex on left curves: a vector-based fNIRS study of left and right curve driving. PLoS One 10, e0127594.
  113. Osaka, N., Minamoto, T., Yaoi, K., Azuma, M., Shimada, Y.M., and Osaka, M. (2015). How two brains make one synchronized mind in the inferior frontal cortex: fNIRS-based hyperscanning during cooperative singing. Front. Psychol. 6, 1811.
  114. Packer, A.M., Russell, L.E., Dalgleish, H.W., and Häusser, M. (2015). Simultaneous all-optical manipulation and recording of neural circuit activity with cellular resolution in vivo. Nat. Methods 12, 140-146.
  115. Piper, S.K., Krueger, A., Koch, S.P., Mehnert, J., Habermehl, C., Steinbrink, J., Obrig, H., and Schmitz, C.H. (2014). A wearable multichannel fNIRS system for brain imaging in freely moving subjects. Neuroimage 85, 64-71.
  116. Pu, S., Yamada, T., Yokoyama, K., Matsumura, H., Kobayashi, H., Sasaki, N., Mitani, H., Adachi, A., Kaneko, K., and Nakagome, K. (2011). A multi-channel near-infrared spectroscopy study of prefrontal cortex activation during working memory task in major depressive disorder. Neurosci. Res. 70, 91-97.
  117. Pu, S.H., Nakagome, K., Yamada, T., Yokoyama, K., Matsumura, H., Mitani, H., Adachi, A., Nagata, I., and Kaneko, K. (2012). The relationship between the prefrontal activation during a verbal fluency task and stress-coping style in major depressive disorder: a nearinfrared spectroscopy study. J. Psychiatr. Res. 46, 1427-1434.
  118. Quan, W.X., Wu, T.N., Li, Z.H., Wang, Y.D., Dong, W.T., and Lv, B. (2015). Reduced prefrontal activation during a verbal fluency task in Chinese-speaking patients with schizophrenia as measured by nearinfrared spectroscopy. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 58, 51-58.
  119. Quaresima, V., Giosue, P., Roncone, R., Casacchia, M., and Ferrari, M. (2009). Prefrontal cortex dysfunction during cognitive tests evidenced by functional near-infrared spectroscopy. Psychiatry Res. Neuroimaging 171, 252-257.
  120. Roche‐Labarbe, N., Zaaimi, B., Mahmoudzadeh, M., Osharina, V., Wallois, A., Nehlig, A., Grebe, R., and Wallois, F. (2010). NIRS‐measured oxy‐and deoxyhemoglobin changes associated with EEG spike‐and‐wave discharges in a genetic model of absence epilepsy: the GAERS. Epilepsia 51, 1374-1384.
  121. Roy, C.S., and Sherrington, C.S. (1890). On the regulation of the blood‐supply of the brain. J. Physiol. 11, 85-158.
  122. Sakudo, A. (2016). Near-infrared spectroscopy for medical applications: current status and future perspectives. Clin. Chim. Acta 455, 181-188.
  123. Schecklmann, M., Dresler, T., Beck, S., Jay, J.T., Febres, R., Haeusler, J., Jarczok, T.A., Reif, A., Plichta, M.M., Ehlis, A.C., et al. (2011a). Reduced prefrontal oxygenation during object and spatial visual working memory in unpolar and bipolar depression. Psychiatry Res. Neuroimaging 194, 378-384.
  124. Schecklmann, M., Schaldecker, M., Aucktor, S., Brast, J., Kirchgassner, K., Muhlberger, A., Warnke, A., Gerlach, M., Fallgatter, A.J., and Romanos, M. (2011b). Effects of methylphenidate on olfaction and frontal and temporal brain oxygenation in children with ADHD. J. Psychiatr. Res. 45, 1463-1470.
  125. Shimodera, S., Imai, Y., Kamimura, N., Morokuma, I., Fujita, H., Inoue, S., and Furukawa, T.A. (2012). Mapping hypofrontality during letter fluency task in schizophrenia: a multi-channel near-infrared spectroscopy study. Schizophr. Res. 136, 63-69.
  126. Shortz, A.E., Pickens, A., Zheng, Q., and Mehta, R.K. (2015). The effect of cognitive fatigue on prefrontal cortex correlates of neuromuscular fatigue in older women. J. Neuroeng. Rehab. 12, 115.
  127. Takeshi, K., Nemoto, T., Fumoto, M., Arita, H., and Mizuno, M. (2010). Reduced prefrontal cortex activation during divergent thinking in schizophrenia: a multi-channel NIRS study. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 34, 1327-1332.
  128. Takizawa, R., Kasai, K., Kawakubo, Y., Marumo, K., Kawasaki, S., Yamasue, H., and Fukuda, M. (2008). Reduced frontopolar activation during verbal fluency task in schizophrenia: a multi-channel nearinfrared spectroscopy study. Schizophr. Res. 99, 250-262.
  129. Tamura, R., Kitamura, H., Endo, T., Abe, R., and Someya, T. (2012). Decreased leftward bias of prefrontal activity in autism spectrum disorder revealed by functional near-infrared spectroscopy. Psychiatry Res. Neuroimaging 203, 237-240.
  130. Tang, H.H., Mai, X.Q., Wang, S., Zhu, C.Z., Krueger, F., and Liu, C. (2016). Interpersonal brain synchronization in the right temporoparietal junction during face-to-face economic exchange. Soc. Cogn. Affect. Neurosci. 11, 23-32.
  131. Tsujimoto, S., Yasumura, A., Yamashita, Y., Torii, M., Kaga, M., and Inagaki, M. (2013). Increased prefrontal oxygenation related to distractor-resistant working memory in children with attentiondeficit/ hyperactivity disorder (ADHD). Child Psychiatry Hum. Dev. 44, 678-688.
  132. Urakawa, S., Takamoto, K., Ishikawa, A., Ono, T., and Nishijo, H. (2015). Selective medial prefrontal cortex responses during live mutual gaze interactions in human infants: an fNIRS study. Brain Topogr. 28, 691-701.
  133. Vannasing, P., Florea, O., Gonzalez-Frankenberger, B., Tremblay, J., Paquette, N., Safi, D., Wallois, F., Lepore, F., Beland, R., Lassonde, M., et al. (2016). Distinct hemispheric specializations for native and nonnative languages in one-day-old newborns identified by fNIRS. Neuropsychologia 84, 63-69.
  134. Villringer, A., and Dirnagl, U. (1995). Coupling of brain activity and cerebral blood flow: basis of functional neuroimaging. Cereb. Brain Metabol. Rev. 7, 240-276.
  135. Villringer, A., and Chance, B. (1997). Non-invasive optical spectroscopy and imaging of human brain function. Trends Neurosci. 20, 435-442.
  136. Vogeli, S., Lutz, J., Wolf, M., Wechsler, B., and Gygax, L. (2014). Valence of physical stimuli, not housing conditions, affects behaviour and frontal cortical brain activity in sheep. Behav. Brain Res. 267, 144-155.
  137. Vogeli, S., Wolf, M., Wechsler, B., and Gygax, L. (2015a). Frontal brain activity and behavioral indicators of affective states are weakly affected by thermal stimuli in sheep living in different housing conditions. Front Vet. Sci. 2, 9.
  138. Vogeli, S., Wolf, M., Wechsler, B., and Gygax, L. (2015b). Housing conditions influence cortical and behavioural reactions of sheep in response to videos showing social interactions of different valence. Behav. Brain Res. 284, 69-76.
  139. von Luhmann, A., Herff, C., Heger, D., and Schultz, T. (2015). Toward a wireless open source instrument: functional near-infrared spectroscopy in mobile neuroergonomics and BCI applications. Front. Hum. Neurosci. 9, 617.
  140. von Luhmann, A., Wabnitz, H., Sander, T., and Muller, K.R. (2017). M3BA: a mobile, modular, multimodal biosignal acquisition architecture for miniaturized EEG-NIRS-based hybrid BCI and monitoring. IEEE Trans. Biomed. Eng. 64, 1199-1210.
  141. Wakita, M., Shibasaki, M., Ishizuka, T., Schnackenberg, J., Fujiawara, M., and Masataka, N. (2010). Measurement of neuronal activity in a macaque monkey in response to animate images using near-infrared spectroscopy. Front. Behav. Neurosci. 4, 31.
  142. Watanabe, A., and Kato, T. (2004). Cerebrovascular response to cognitive tasks in patients with schizophrenia measured by nearinfrared spectroscopy. Schizophr. Bull. 30, 435-444.
  143. Weber, P., Lutschg, J., and Fahnenstich, H. (2005). Cerebral hemodynamic changes in response to an executive function task in children with attention-deficit hyperactivity disorder measured by near-infrared spectroscopy. J. Dev. Behav. Pediatr. 26, 105-111.
  144. Wolf, T., Lindauer, U., Reuter, U., Back, T., Villringer, A., Einhaupl, K., and Dirnagl, U. (1997). Noninvasive near infrared spectroscopy monitoring of regional cerebral blood oxygenation changes during peri-infarct depolarizations in focal cerebral ischemia in the rat. J. Cereb. Blood Flow Metab. 17, 950-954.
  145. Xiao, T., Xiao, Z., Ke, X.Y., Hong, S.S., Yang, H.Y., Su, Y.L., Chu, K.K., Xiao, X., Shen, J.Y., and Liu, Y.J. (2012). Response inhibition impairment in high functioning autism and attention deficit hyperactivity disorder: evidence from near-infrared spectroscopy Data. PLoS One 7, e46569.
  146. Xu, L.W., Wang, B.T., Xu, G.C., Wang, W., Liu, Z.A., and Li, Z.Y. (2017). Functional connectivity analysis using fNIRS in healthy subjects during prolonged simulated driving. Neurosci. Lett. 640, 21-28.
  147. Yasumura, A., Kokubo, N., Yamamoto, H., Yasumura, Y., Nakagawa, E., Kaga, M., Hiraki, K., and Inagaki, M. (2014). Neurobehavioral and hemodynamic evaluation of Stroop and reverse Stroop interference in children with attention-deficit/hyperactivity disorder. Brain Dev. 36, 97-106.
  148. Zaidi, A.D., Munk, M.H., Schmidt, A., Risueno-Segovia, C., Bernard, R., Fetz, E., Logothetis, N., Birbaumer, N., and Sitaram, R. (2015). Simultaneous epidural functional near-infrared spectroscopy and cortical electrophysiology as a tool for studying local neurovascular coupling in primates. Neuroimage 120, 394-399.

Cited by

  1. Applications of Functional Near-Infrared Spectroscopy (fNIRS) Neuroimaging in Exercise–Cognition Science: A Systematic, Methodology-Focused Review vol.7, pp.12, 2018,
  2. Existence of Initial Dip for BCI: An Illusion or Reality vol.12, pp.1662-5218, 2018,
  3. Effect of Scalp Hair Follicles on NIRS Quantification by Monte Carlo Simulation and Visible Chinese Human Dataset vol.10, pp.5, 2018,
  4. Prefrontal modulation during chewing performance in occlusal dysesthesia patients: a functional near-infrared spectroscopy study pp.1436-3771, 2018,