DOI QR코드

DOI QR Code

A Review on Monitoring the Everglades Wetlands in the Southern Florida Using Space-based Synthetic Aperture Radar (SAR) Observations

  • Hong, Sang-Hoon (Department of Geological Sciences, Pusan National University) ;
  • Wdowinski, Shimon (Department of Earth & Environment, Florida International University)
  • Received : 2017.08.07
  • Accepted : 2017.08.16
  • Published : 2017.08.31

Abstract

Space-based Synthetic Aperture Radar (SAR) observations have been widely and successfully applied to acquire invaluable temporal and spatial information on wetlands, which are unique environments and regarded as important ecosystems. One of the best studied wetland area is Everglades, which is located in southern Florida, USA. As a World Heritage Site, the Everglades is the largest natural and subtropical wilderness in the United States. The Everglades wetlands have been threatened by anthropogenic activities such as urban expansion and agricultural development, as well as by natural processes, as sea level changes due to climate change. In order to conserve this unique wetland environment, various restoration plans have been implemented. In this review paper, we summarize the main studies using space-based SAR observations for monitoring the Everglades. The paper is composed of the following two sections: (1) review of backscattered amplitude analysis and observations, and (2) review of interferometric SAR (InSAR) analysis and applications. This study also provides an overview of a wetland InSAR technique and space-based SAR sensors. The goal of this review paper is to provide a comprehensive summary of space-based SAR monitoring of wetlands, using the Everglades wetlands as a case study.

Acknowledgement

Grant : Florida Coastal Everglades - Long Term Ecological Research - FCE-LTER

Supported by : National Research Foundation of Korea (NRF)

References

  1. Alsdorf, D. E., L. C. Smith and J. M. Melack, 2001. Amazon floodplain water level changes measured with interferometric SIR-C radar. Ieee Transactions on Geoscience and Remote Sensing, 39(2): 423-431. https://doi.org/10.1109/36.905250
  2. Bourgeau-Chavez, L. L., E. S. Kasischke and K. Smith, 1996. Using satellite radar imagery to monitor flood conditions in wetland ecosystems of southern Florida. Remote sensing of vegetation and sea, 2959: 139-148.
  3. Bourgeau-Chavez, L. L., K. B. Smith, S. M. Brunzell, E. S. Kasischke, E. A. Romanowicz and C. J. Richardson, 2005. Remote monitoring of regional inundation patterns and hydroperiod in the greater everglades using synthetic aperture radar. Wetlands, 25(1): 176-191. https://doi.org/10.1672/0277-5212(2005)025[0176:RMORIP]2.0.CO;2
  4. Brisco, B., F. Ahern, S-H. Hong, S. Wdowinski, K. Murnaghan, L. White and D. K. Atwood, 2015. Polarimetric Decompositions of Temperate Wetlands at C-Band. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(7): 3585-3594. https://doi.org/10.1109/JSTARS.2015.2414714
  5. Brisco, B., K. Murnaghan, S. Wdowinski and S-H. Hong, 2015. Evaluation of RADARSAT-2 Acquisition Modes for Wetland Monitoring Applications. Canadian Journal of Remote Sensing, 41(5): 431-439. https://doi.org/10.1080/07038992.2015.1104636
  6. Bryan, M. L., 1981. Potentials for change detection using Seasat synthetic aperture radar data. International Geoscience and Remote Sensing Symposium, Washington DC, USA, June 8-10, vol. 2, pp. 1451-1457.
  7. Bryan, M. L. and J. Clark, 1984. Potentials for change detection using Seasat synthetic aperture radar data. Remote sensing of Environment, 16(2): 107-124. https://doi.org/10.1016/0034-4257(84)90056-7
  8. Cloude, S., 2009. Polarisation: applications in remote sensing, Oxford University Press, USA.
  9. Di Baldassarre, G., G. Schumann, L. Brandimarte and P. Bates, 2011. Timely low resolution SAR imagery to support floodplain modelling: a case study review. Surveys in Geophysics, 32(3): 255-269. https://doi.org/10.1007/s10712-011-9111-9
  10. Feliciano, E., S. Wdowinski, M. Potts, and S. Kim, 2011. Estimation of Above Ground Biomass in the Everglades National Park using X-, C-, and L-band SAR data and Ground-based LiDAR, AGU Fall Meeting 2011, San Francisco, California, USA, Dec. 5-9.
  11. Feliciano, E. A., 2015. Multi-Scale Remote Sensing Assessments of Forested Wetlands: Applications to the Everglades National Park, University of Miami, Coral Gables, Florida, USA.
  12. Feliciano, E., S. Wdowinski, M. Potts, S. Lee, and T. Fatoyinbo, 2017. Estimating Mangrove Canopy Height and Above-Ground Biomass in the Everglades National Park with Airborne LiDAR and TanDEM-X Data, Remote Sensing, 9(7), 702. https://doi.org/10.3390/rs9070702
  13. Gondwe, B. R. N., S.-H. Hong, S. Wdowinski and B.- G. Peter, 2010. Hydrologic Dynamics of the Groundwater-dependent Sian Ka'aN Wetlands, Mexico, From InSAR and SAR Data. Wetlands, 30(1): 1-13. https://doi.org/10.1007/s13157-009-0016-z
  14. Hanssen, R., 2001. Radar interferometry: Data interpretation and error analysis, Kluwer Academic Publishers, Berlin, Germany.
  15. Hong, S.-H., H.-O. Kim, S. Wdowinski and E. Feliciano, 2015. Evaluation of polarimetric SAR decomposition for classifying wetland vegetation types. Remote Sensing, 7(7): 8563-8585. https://doi.org/10.3390/rs70708563
  16. Hong, S.-H. and S. Wdowinski, 2012. Evaluation of the quad-polarimetric Radarsat-2 observations for the wetland InSAR application. Canadian Journal of Remote Sensing, 37(5): 484-492. https://doi.org/10.5589/m11-058
  17. Hong, S.-H., S. Wdowinski and S.-W. Kim, 2010a. Evaluation of TerraSAR-X observations for wetland InSAR application. IEEE Transactions on Geoscience and Remote Sensing, 48(2): 864-873. https://doi.org/10.1109/TGRS.2009.2026895
  18. Hong, S.-H., S. Wdowinski, S.-W. Kim and J.-S. Won, 2010b. Multi-temporal monitoring of wetland water levels in the Florida Everglades using interferometric synthetic aperture radar (InSAR). Remote Sensing of Environment, 114(11): 2436-2447. https://doi.org/10.1016/j.rse.2010.05.019
  19. Hong, S. H. and S. Wdowinski, 2014a. Double-Bounce Component in Cross-Polarimetric SAR From a New Scattering Target Decomposition. IEEE Transactions on Geoscience and Remote Sensing, 52(6): 3039-3051. https://doi.org/10.1109/TGRS.2013.2268853
  20. Hong, S. H. and S. Wdowinski, 2014b. Multitemporal Multitrack Monitoring of Wetland Water Levels in the Florida Everglades Using ALOS PALSAR Data With Interferometric Processing. IEEE Geoscience and Remote Sensing Letters, Geoscience and Remote Sensing Letters, IEEE, IEEE Geosci. Remote Sensing Lett., 11(8): 1355-1359.
  21. John, A., H. R. Fuentes and D. Gann, 2013. Application of single polarimetric Radarsat-2 images in estimating water stage int the Everglades, World Environmental and Water Resources Congress 2016, West Palm Beach, Florida, USA, May 22-26.
  22. JPL, N., 2017, https://nisar.jpl.nasa.gov/technology/polsar/.
  23. Kasischke, E. S. and L. L. Bourgeau-Chavez, 1997. Monitoring South Florida wetlands using ERS-1 SAR imagery. Photogrammetric Engineering and Remote Sensing, 63(3): 281-291.
  24. Kasischke, E. S., K. B. Smith, L. L. Bourgeau-Chavez, E. A. Romanowicz, S. Brunzell and C. J. Richardson, 2003. Effects of seasonal hydrologic patterns in south Florida wetlands on radar backscatter measured from ERS-2 SAR imagery. Remote sensing of environment, 88(4): 423-441. https://doi.org/10.1016/j.rse.2003.08.016
  25. Kim, J.-W., Z. Lu, J. W. Jones, C. K. Shum, H. Lee and Y. Jia, 2014. Monitoring Everglades freshwater marsh water level using L-band synthetic aperture radar backscatter. Remote Sensing of Environment, 150: 66-81. https://doi.org/10.1016/j.rse.2014.03.031
  26. Kim, J.-W., Z. Lu, H. Lee, C. Shum, C. M. Swarzenski, T. W. Doyle and S.-H. Baek, 2009. Integrated analysis of PALSAR/Radarsat-1 InSAR and ENVISAT altimeter data for mapping of absolute water level changes in Louisiana wetlands. Remote Sensing of Environment, 113(11): 2356-2365. https://doi.org/10.1016/j.rse.2009.06.014
  27. Kim, J. W., 2013. Applications of Synthetic Aperture Radar (SAR)/ SAR Interferometry (InSAR) for Monitoring of Wetland Water Level and Land Subsidence, The Ohio State University, Columbus, Ohio, USA.
  28. Kim, S.-W., S. Wdowinski, F. Amelung, T. H. Dixon and J.-S. Won, 2013. Interferometric Coherence Analysis of the Everglades Wetlands, South Florida. IEEE Transactions on Geoscience & Remote Sensing, 51(12): 5210-5224. https://doi.org/10.1109/TGRS.2012.2231418
  29. Lu, Z., M. Crane, O. Kwoun, C. Wells, C. Swarzenski and R. Rykhus, 2005. C-band Radar Observes Water Level Change in Swamp Forests. EOS, Transcations, AGU, 86(14): 141-144.
  30. Lu, Z. and O. I. Kwoun, 2008. Radarsat-1 and ERS InSAR analysis over southeastern coastal Louisiana: Implications for mapping waterlevel changes beneath swamp forests. IEEE Transactions on Geoscience and Remote Sensing, 46(8): 2167-2184. https://doi.org/10.1109/TGRS.2008.917271
  31. Richards, J. A., P. W. Woodgate and A. K. Skidmore, 1987. An Explanation of Enhanced Radar Backscattering from Flooded Forests. International Journal of Remote Sensing, 8(7): 1093-1100. https://doi.org/10.1080/01431168708954756
  32. Short, N. M., 2017, http://geoinfo.amu.edu.pl/wpk/rst/rst/Sect8/Sect8_5.html.
  33. Simard, M., K. Zhang, V. H. Rivera-Monroy, M. S. Ross, P. L. Ruiz, E. Castañeda-Moya, R. R. Twilley and E. Rodriguez, 2006. Mapping height and biomass of mangrove forests in Everglades National Park with SRTM elevation data. Photogrammetric Engineering & Remote Sensing, 72(3): 299-311. https://doi.org/10.14358/PERS.72.3.299
  34. Talib, O. and S. Wdowinski, 2016. InSAR-Based Mapping of Tidal Inundation Extent and Amplitude in Louisiana Coastal Wetlands. Remote Sensing, 8(5): 393 https://doi.org/10.3390/rs8050393
  35. Tiner, R. W., M. W. Lang and V. V. Klemas, 2015. Remote sensing of wetlands: applications and advances, CRC Press, Boca Rato, Florida, USA.
  36. UNAVCO, 2017, https://www.unavco.org/instrumentation/geophysical/imaging/sar-satellites/sar-satellites.html.
  37. Wdowinski, S., F. Amelung, F. Miralles-Wilhelm, T. H. Dixon and R. Carande, 2004. Space-based measurements of sheet-flow characteristics in the Everglades wetland, Florida. Geophysical Research Letters, 31(15).
  38. Wdowinski, S. and S. Eriksson, 2009. Geodesy in the 21st Century. Eos, Transactions American Geophysical Union, 90(18): 153-155. https://doi.org/10.1029/2009EO180001
  39. Wdowinski, S., S.-H. Hong, A. Mulcan and B. Brisco, 2013. Remote-sensing monitoring of tide propagation through coastal wetlands. Oceanography, 26(3): 64-69. https://doi.org/10.5670/oceanog.2013.46
  40. Wdowinski, S., S.-W. Kim, F. Amelung, T. H. Dixon, F. Miralles-Wilhelm and R. Sonenshein, 2008. Space-based detection of wetlands' surface water level changes from L-band SAR interferometry. Remote Sensing of Environment, 112(3): 681-696. https://doi.org/10.1016/j.rse.2007.06.008
  41. White, L., B. Brisco, M. Dabboor, A. Schmitt and A. Pratt, 2015. A collection of SAR methodologies for monitoring wetlands. Remote sensing, 7(6): 7615-7645. https://doi.org/10.3390/rs70607615