DOI QR코드

DOI QR Code

Sensitive determination of pendimethalin and dinoseb in environmental water by ultra performance liquid chromatography-tandem mass spectrometry

  • Lim, Hyun-Hee (Department of Environmental Science, Kongju National University) ;
  • Park, Tae-Jin (Water Environmental Engineering Research Division, National Institute of Environmental Research) ;
  • Lee, Soo-Hyung (Water Environmental Engineering Research Division, National Institute of Environmental Research) ;
  • Shin, Ho-Sang (Department of Environmental Education, Kongju National University)
  • Received : 2017.06.15
  • Accepted : 2017.08.08
  • Published : 2017.08.25

Abstract

Direct injection (DI) and solid phase extraction (SPE) methods for the simultaneous determination of pendimethalin (PDM) and dinoseb (DNS) in environmental water have been optimized using the ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method. The limits of quantification (LOQs) of PDM and DNS were $0.01{\mu}g/L$ using the DI method and $0.0001-0.0002{\mu}g/L$ using the SPE method. The precision by SPE UPLC-MS/MS was less than 11 % for intra-day and inter-day analyses. When the proposed SPE method was used to analyze two analytes in environmental water, PDM was detected in a concentration range of $0.0002-0.011{\mu}g/L$ in 31 samples of the 114 surface water samples, and DNS was detected in a concentration range of $0.0005-0.045{\mu}g/L$ in 17 samples of the 114 surface water samples analyzed. When the DI method was used to analyze target compounds in the same samples, the detected concentrations of the two analytes were within 21% in samples with concentrations above $0.01{\mu}g/L$. The DI UPLC-MS/MS method can thus be used for the routine monitoring of PDM and DNS in environmental water, and the SPE LC-MS/MS method can be used for the determination of the ultra-trace PDM and DNS residues in environmental water.

Keywords

pendimethalin;dinoseb;ultra performance liquid chromatography-tandem mass spectrometry;direct injection;environmental water

References

  1. Extention Toxicology Network (EXTOXNET), Pesticide Information Profile, Available online at http://extoxnet.orst.edu/pips/ghindex.html.
  2. P. W. M. Augustijn-Beckers, A. G. Hornsby, and R. D. Wauchope, Rev. Environ. Contam. Toxicol., 137, 1-82 (1994).
  3. C. MacBean, The Pesticide Manual 16 th (British Crop Production Council, United Kingdom, 2012). Available online at http://bcpcdata.com/_assets/files/PM16-supplementary-BCPC.pdf.
  4. USEPA (United States Environmental Protection Agency), National primary drinking water regulations, EPA 822-R-03-005 (Office of Water, Washington DC, 1998). Available online at http://water.epa.gov/drink/contaminants/#List.
  5. WHO (World Health Organization), Pendimethalin in drinking-water, Background document for preparation of WHO Guidelines for drinking-water quality, (WHO, Geneva, 2003). Available online at http://www.who.int/water_sanitation_health/dwq/chemicals/pendimethalin.pdf.
  6. European Council, Drinking Water Guidelines, Council Directive 98/83/EC on the quality of water intended for human consumption, (European Council, Brussels, 1998). Available online at http://eur-lex.europa.eu/legal content/EN/TXT/?uri=CELEX:31998L0083.
  7. UBA (Umweltbundesamt) ETOX, Information System Ecotoxicology and Environmental Quality Targets database, (Germany Umweltbundesamt, Sachsen anhalt). Available online at http://webetox.uba.de/webETOX/public/search/ziel/open.do?language=en&language=de.
  8. B. Zhang, X. Pan, L. Venne, S. Dunnum, S. T. McMurry, G. P. Cobb, and T. A. Anderson, Talanta, 75, 1055-1060 (2008). https://doi.org/10.1016/j.talanta.2008.01.032
  9. J. L. Tadeo, J. Castro, and C. Sanchez-Brunete, Int. J. Environ. Anal. Chem., 84, 29-37 (2004). https://doi.org/10.1080/0306731031000149705
  10. V. I. Valsamaki, V. A. Sakkas, and T. A. Albanis, J. Sep. Sci., 30, 1936-1946 (2007). https://doi.org/10.1002/jssc.200600487
  11. L. L. Freitas, E. S. Sant'Anna, E. A. Suchara, V. S. Benato, and E. Carasek, Int. J. Environ. Anal. Chem., 92, 313-323 (2012). https://doi.org/10.1080/03067310903582309
  12. J. Engebretson, G. Hall, M. Hengel, and T. Shibamoto, J. Agric. Food Chem., 49, 2198-2206 (2001). https://doi.org/10.1021/jf010048b
  13. N. L. Calvez, L. Bodineau, and J. C. Fischer, Int. J. Environ. Anal. Chem., 82, 691-703 (2002). https://doi.org/10.1080/0306731021000075410
  14. M. J. Wells and L. Z. Yu, J. Chromatogr. A, 885, 237-250 (2000). https://doi.org/10.1016/S0021-9673(00)00206-5
  15. M. Markovic, S. Cupac, R. Durovic, J. Milinovic, and P. Kljajic, Arch. Environ. Contam. Toxicol., 58, 341-351 (2010). https://doi.org/10.1007/s00244-009-9359-y
  16. C. Goncalves, J. J. Carvalho, M. A. Azenha, and M. F. Alpendurada, J. Chromatogr. A, 1110, 6-14 (2006). https://doi.org/10.1016/j.chroma.2006.01.089
  17. C. Goncalves and M. F. Alpendurada, Talanta, 65, 1179-1189 (2005). https://doi.org/10.1016/j.talanta.2004.08.057
  18. A. Penetra, V. Vale Cardoso, E. Ferreira, and M. J. Benoliel, Water Sci., 62, 667-675 (2010). https://doi.org/10.2166/wst.2010.915
  19. M. C. Bruzzoniti, C. Sarzanini, G. Costantino, and M. Fungi, Anal. Chim. Acta, 578, 241-249 (2006). https://doi.org/10.1016/j.aca.2006.06.066
  20. A. Tanabe, H. Mitobe, K. Kawata, and M. Sakai, J. Chromatogr. A, 754, 159-168 (1996). https://doi.org/10.1016/S0021-9673(96)00221-X
  21. W. E. Johnson, N. J. Fendinger, and J. R. Plimmer, Anal. Chem., 63, 1510-1513 (1991). https://doi.org/10.1021/ac00015a003
  22. A. Ranz and E. Lankmayr, J. Biochem. Biophys. Methods, 69, 3-14 (2006). https://doi.org/10.1016/j.jbbm.2006.02.007
  23. J. Nolte, B. Grass, F. Heimlich, and D. Klockow, Fresen. J. Anal. Chem., 357, 763-767 (1997). https://doi.org/10.1007/s002160050245
  24. L. Bartolome, J. Lezamiz, N. Etxebarria, O. Zuloaga and J. A. Jonsson, J. Sep. Sci., 30, 2144-2152 (2007). https://doi.org/10.1002/jssc.200600509
  25. J. Shah, M. R. Jan, F. U. Shehzad and B. Ara, Environ. Monit. Assess., 175, 103-108 (2011). https://doi.org/10.1007/s10661-010-1496-2
  26. P. Cabras, M. Melis, L. Spanedda, and C. Tuberoso, J. Chromatogr., 585, 164-167 (1991). https://doi.org/10.1016/0021-9673(91)85071-M
  27. K. P. Prousalis, C. K. Kaltsonoudis, and T. Tsegenidis, Int. J. Environ. Anal. Chem., 86, 33-43 (2006). https://doi.org/10.1080/03067310500246571
  28. G. Fernandez-Salinero, M. E. Silva-Vargas, M. E. Leon-Gonzalez, L.V. Perez-Arribas, and L. M. Polo-Diez, J. Chromatogr. A, 839, 227-232 (1999). https://doi.org/10.1016/S0021-9673(99)00179-X
  29. P. R. Loconto, J. Liq. Chrom., 14, 1297-1314 (1991). https://doi.org/10.1080/01483919108049322
  30. M. C. Jecklin, G. Gamez, D. Touboul, and R. Zenobi, Rapid Commun. Mass Spectrom., 22, 2791-2798 (2008). https://doi.org/10.1002/rcm.3677
  31. G. Perchet, G. Merlina, J. C. Revel, M. Hafidi, C. Richard, and E. Pinelli, J. Hazard. Mater., 166, 284-290 (2009). https://doi.org/10.1016/j.jhazmat.2008.11.013
  32. K. Takahashi, R. Ishii, S. Nemoto, and R. Matsuda, J. Food Hyg. Soc. Japan, 54, 1-6 (2013). https://doi.org/10.3358/shokueishi.54.1