DOI QR코드

DOI QR Code

Effect of particle size of TiO2 and octyl-methoxycinnamate (OMC) content on sun protection factor (SPF)

  • Choi, Jaeyeong (Department of Chemistry, Hannam University) ;
  • Kim, Suyeon (Department of Chemistry, Hannam University) ;
  • Kim, Woonjung (Department of Chemistry, Hannam University) ;
  • Eum, Chul Hun (Korea Institute of Geoscience and Mineral Resources) ;
  • Lee, Seungho (Department of Chemistry, Hannam University)
  • Received : 2017.02.17
  • Accepted : 2017.07.31
  • Published : 2017.08.25

Abstract

Exposure to UV light, i.e., UV-A (320-400 nm) or UV-B (290-320 nm) radiation, can cause skin cancer. Titanium dioxide ($TiO_2$) effectively disperses UV light. Therefore, it is used as a physical UV filter in many UV light blockers. Usually, the $TiO_2$ content in commercialized UV blockers is 25 % at most. To block UV-B, a chemical UV blocker, octyl-methoxy cinnamate (OMC) is used. OMC is commonly used in combination with $TiO_2$. In this study, $TiO_2$ and OMC were mixed in different proportions to produce UV blockers with different compositions. Also the changes in the sun protection factor (SPF) based on the composition and $TiO_2$ particle sizes were investigated. In order to analyze the $TiO_2$ particle size, dynamic light scattering (DLS) and asymmetrical flow field-flow fractionation (AsFlFFF) were used. The results showed that the SPF was influenced by the proportion of $TiO_2$ and OMC, where the proportion of $TiO_2$ induced a more significant influence. In addition, changes in the $TiO_2$ particle size based on the proportion of OMC were observed.

Keywords

Titanium dioxide ($TiO_2$);Octyl-methoxy cinnamate (OMC);Sun protection factor (SPF);Asymmetrical flow field-flow fractionation (AF4);Dynamic light scattering (DLS)

Acknowledgement

Supported by : Hannam University

References

  1. D. R. Hayden, A. Imhof, and K. P. Velikov, ACS Appl. Mater. Inter., 8(48), 32655-32660 (2016). https://doi.org/10.1021/acsami.6b12933
  2. G.-S. Sim, J.-H. Kim, Y. Na, D.-H. Lee, B.-C. Lee, Y.-H. Zhang, and H.-B. Pyo, J. Soc. Cosmet. Sci. Korea, 31(4), 329-335 (2005).
  3. B. A. Gilchrest, N. A. Soter, J. S. Stoff, and M. C. Mihm, J. Am. Acad. Dermatol., 5(4), 411-422 (1981). https://doi.org/10.1016/S0190-9622(81)70103-8
  4. F. M. Vilela, F. M. Oliveira, F. T. Vicentini, R. Casagrande, W. A. Verri, Jr., T. M. Cunha, and M. J. Fonseca, J. Photoch. Photobio. B, 163, 413-420 (2016). https://doi.org/10.1016/j.jphotobiol.2016.09.007
  5. Y. Yoon, S. Bae, S. An, Y. B. Choe, K. J. Ahn, and I. S. An, Kor. J. Aesthet. Cosmetol., 11(3), 417-426 (2013).
  6. D.-C. Shin, J.-T. Lee, Y. Chug, N.-K. Kang, and J.-Y. Yang, Environ. Health Toxicol., 11(1), 1-10 (1996).
  7. S. Miksa, D. Lutz, C. Guy, and E. Delamour, Int. J. Cosmet. Sci., 38(6), 541-549 (2016). https://doi.org/10.1111/ics.12333
  8. J. P. Santos Caetano, A. P. Abarca, M. Guerato, L. Guerra, S. Schalka, D. C. Perez Simao, and R. Vila, Int. J. Cosmet. Sci., 38(6), 576-580 (2016). https://doi.org/10.1111/ics.12322
  9. S. K. Jeon, E. J. Kim, J. Lee, and S. Lee, J. Hazard. Mater., 317, 312-318 (2016). https://doi.org/10.1016/j.jhazmat.2016.05.099
  10. D. Park, H. M. Shahbaz, S. H. Kim, M. Lee, W. Lee, J. W. Oh, D. U. Lee, and J. Park, Int. J. Food Microbiol., 238, 256-264 (2016). https://doi.org/10.1016/j.ijfoodmicro.2016.09.025
  11. A. P. Popov, A. V. Priezzhev, J. Lademann, and R. Myllyla, J. Phys. D: Appl. Phys., 38(15), 2564-2570 (2005). https://doi.org/10.1088/0022-3727/38/15/006
  12. N. Serpone, D. Dondi, and A. Albini, Inorg. Chim. Acta, 360(3), 794-802 (2007). https://doi.org/10.1016/j.ica.2005.12.057
  13. L. A. Baker, L. C. Grosvenor, M. N. R. Ashfold, and V. G. Stavros, Chem. Phys. Lett., 664, 39-43 (2016). https://doi.org/10.1016/j.cplett.2016.10.002
  14. C.-K. Zhoh, H.-J. Kwon, and S.-R. Ahn, Asia J. Beauty Cosmetol., 9(2), 1-8 (2011).
  15. A. Samontha, J. Shiowatana, and A. Siripinyanond, Anal. Bioanal. Chem., 399(2), 973-978 (2011). https://doi.org/10.1007/s00216-010-4298-z
  16. C. C. Lin and W. J. Lin, Food and Durg Analysis, 19, 1-8 (2011).
  17. D. Nesseem, Int. J. Cosmet. Sci., 33(1), 70-79 (2011). https://doi.org/10.1111/j.1468-2494.2010.00598.x
  18. J. C. Giddings, F. J. F. Yang, and M. N. Myers, Science, 193(4259), 1244-1245 (1976). https://doi.org/10.1126/science.959835
  19. J. C. Giddings, 'Characterization of colloid-sized and larger particles by field-flow fractionation', Los Angeles, CA, USA, 156-159 (1988).
  20. J. C. Giddings, Science, 260(5113), 1456-1465 (1993). https://doi.org/10.1126/science.8502990
  21. Martin E. Schimpf, Karin Caldwell, and J. C. Giddings, In 'Chapter 18. Asymmetrical Flow Field-Flow Fractionation', pp 279-294, K. G. Wahlund, Ed., Wiley-Interscience, New York, 2000.
  22. Martin E. Schimpf, Karin Caldwell, and J. C. Giddings, In 'Chapter 2. Retention-Normal Mode', pp 31-48, Mark R. Schure, Martin E. Schimpf, and P. D. Schettler, Eds., Wiley-Interscience, New York, 2000.
  23. Ministry of Food and Drug Safety No. 2012-88(2012. 08. 24), Republic of Korea.
  24. C. H. Eum, D. Y. Kang, and S. Lee, J. Korean Soc. Environ. Anal., 9(4), 243-249 (2006).
  25. E. J. Kim, M. J. Kim, N. R. Im, and S. N. Park, J. Photoch. Photobio. B, 149, 196-203 (2015). https://doi.org/10.1016/j.jphotobiol.2015.05.011
  26. S. Schachermeyer, J. Ashby, M. Kwon, and W. Zhong, J. Chromatogr. A, 1264, 72-79 (2012). https://doi.org/10.1016/j.chroma.2012.09.050
  27. A. Zattoni, D. C. Rambaldi, P. Reschiglian, M. Melucci, S. Krol, A. M. C. Garcia, A. Sanz-Medel, D. Roessner, and C. Johann, J. Chromatogr. A, 1216(52), 9106-9112 (2009). https://doi.org/10.1016/j.chroma.2009.06.037
  28. S. Lee, S. Prabhakara Rao, M. H. Moon, and J. Calvin Giddings, Anal. Chem., 68(9), 1545-1549 (1996). https://doi.org/10.1021/ac9511814
  29. J. Choi, H. D. Kwen, Y. S. Kim, S. H. Choi, and S. Lee, Microchem. J., 117, 34-39 (2014). https://doi.org/10.1016/j.microc.2014.06.002