Korean Media Partisanship in the Report on THAAD Rumor Network and Frame Analysis

사드 루머(THAAD rumor) 보도에 나타난 한국 언론의 정파성 네트워크 분석과 프레임 분석을 중심으로

  • Received : 2017.05.29
  • Accepted : 2017.07.19
  • Published : 2017.08.25

Abstract

This study stereotyped the media on the basis of ideological inclinations and media types and explored the news coverage through word analysis, network analysis, and frame analysis. There was no difference between conservative media and progressive media in terms of the amount of news. The conservative mainstream media considered the THAAD rumor as an unnecessary misunderstanding and a rumor based conflict of the south-south. The progressive mainstream media mentioned much about Hwang Gyoan, external influences, and lies and highlighted the government's opinion that there was external influence that spread a vicious rumor. Conservative media mentioned on the bringing about social disturbance and in case of progressive media mentioned social disturbance, and progressive media mentioned the responsibility of government and the attitude of conservative media about the diffusion of the rumor. In conclusion the press framed the THAAD rumor on the basis of their ideological inclinations instead of the role of journalist.

Acknowledgement

Supported by : 한국연구재단

References

  1. 김영욱.임유진 (2009). 언론의 정부-언론관계와 언론정책에 대한 담론 변화 분석. <한국언론학보>, 53권 4호, 94-115.
  2. 박성희 (2009). 제17대 대통령 후보 합동 토론 언어네트워크 분석: 북한 관련 이슈를 중심으로.<한국언론정보학보>, 45권, 220-254.
  3. 서현진 (2013), 18대 대통령 선거에서의 미디어 이용과 후보 선택. 이내영.서현진 (편), <변화하는 유권자5>. 서울: 동아시아연구원.
  4. 손영준 (2004). 미디어 이용이 보수 진보적 의견에 미치는 영향. <한국언론학보>, 48권 2호, 240-266.
  5. 손영준 (2011). TV 뉴스 공정성에 대한 시민 인식 조사. <한국방송학보>, 25권 5호, 122-158.
  6. 이소영 (2015), 한국 선거에서의 미디어 매개효과. <한국정치학회보>, 49권 5호, 287-314.
  7. 이창길 (2010). 정권 초기의 가치지향과 정책우선순위: 참여정부와 이명박 정부의 언어네트워크 비교분석. <한국행정학보>. 44권 3호, 165-189.
  8. 이혜미.김혜영.유승호 (2016). 국내 언론매체의 이념성향과 뉴스구성에 대한 연구: 미 대선 후보 '버니 샌더스' 관련 보도의 의미연결망 분석을 중심으로. <한국콘텐츠학회논문지>, 16권 8호, 180-191. https://doi.org/10.5392/JKCA.2016.16.08.180
  9. 정수영.황경호 (2015). 한.일 주요 일간지의 한류 관련 뉴스 프레임과 국가 이미지: 기사 헤드라인에 대한 의미연결망 분석을 중심으로. <한국언론학보>, 59권 3호, 300-334.
  10. 최현주 (2010). 한국 신문 보도의 이념적 다양성에 대한 고찰. <한국언론학보>, 54권 3호, 399-426.
  11. 홍주현 (2016). 루머가 SNS를 만나면 뉴스가 된다?: 루머 확산매체로서 SNS와 저널리즘. <언론중재>, 가을호, 18-27.
  12. 홍주현.김경희 (2017). 언론의 정치적 성향이 뉴미디어 정책 관련 사설의 의제 및 보도 태도에 미치는 영향. <한국콘텐츠학회논문지>, 17권 3호, 162-177. https://doi.org/10.5392/JKCA.2017.17.03.162
  13. 홍주현.나은경 (2015). 세월호 사건 보도의 피해자 비난 경향 연구: 보수 종편 채널 뉴스의 피해자 범주화 및 단어 네트워크 프레임 분석. <한국언론학보>, 59권 6호, 69-106.
  14. 홍주현.윤해진 (2014). 트위터를 통한 루머의 확산 과정 연구: 한미 FTA 관련 루머의 자극성에 따른 의견 확산 추이와 이용자의 상호작용성을 중심으로. <한국언론정보학보>, 66권, 59-86.
  15. An, S. K., & Gower, K. K. (2009). How do the news media frame crises? A content analysis of crisis news coverage. Public Relations Review, 35(2), 107-112. https://doi.org/10.1016/j.pubrev.2009.01.010
  16. Benjamin, D. (2007). A FrameWorks Institute framebyte episodic vs. thematic stories. Retrieved from http://www.frameworksinstitute.org/assets/files/framebytes/framebyte_thematic.pdf
  17. Berger, P., & Luckman, T. (1991). The social construction of reality. Harmondsworth, UK: Penguin Books.
  18. Borge-Holthoefer, J., & Moreno, Y. (2011). Absence of influential spreaders in rumor dynamics. Arxiv preprint, arXiv:1112.2239
  19. Borge-Holthoefer, J., & Maloni, S. (2013). Emergence of influential spreaders in modified rumor models. J Stat Phys, 151, 383-393. https://doi.org/10.1007/s10955-012-0595-6
  20. Chilton, P., & Schaffner, C. (1997). Discourse and politics. In T. A. van Dijk (Ed.), Discourse as social interaction (pp. 206-230). London, UK: Sage.
  21. Dalziel, G. (2016). Rumor and communication in Asia in the internet age. New York, NY: Routledge.
  22. DellaVigna, S., & Kaplan, E. (2007). The political impact of media bias. In R. Islam (Ed.), Information and public choice: From media markets to policy making (pp. 79-106). Washington, DC: The World Bank Publications. Retrieved from http://econweb.umd.edu/-kaplan/wbpaper.pdf
  23. Deuze, M. (2003). The web and its journalism: Considering the consequence of different types of news media online. New Media & Society, 5(2), 203-230. https://doi.org/10.1177/1461444803005002004
  24. Fawkes, J., & Gregory, A. (2000). Applying communication theories to the internet. Journal of Communication Management, 5(2), 109-124. https://doi.org/10.1108/13632540110806703
  25. Gamson, W. A. (1989). News as framing comments on graber: Manifest and latent content the picture messages the etiology of content. American Behavioral Scinetist, 33(2), 157-161. https://doi.org/10.1177/0002764289033002006
  26. Gentzkow, M., Petek, N., & Shapiro, J. M. (2014). Do newspapers serve the state? Incumbent party influence on the US Press, 1869-1928 [On-Line]. Retrieved from http://www.brown.edu/Research/Shapiro/pdfs/PoliticalInfluence.pdf
  27. Gloor, P. A., & Zhao, Y. (2006). Analyzing actors and their discussion topics by semantic social network analysis. Proceedings of the Information Visualization (IV '06) (pp. 130-135).
  28. Goffman, E. (1974). Frame analysis: An essay on the organization of experience. Cambridge, MA: Harvard University Press.
  29. Hallahan, K. (1999). Seven models of framing: Implications for public relations. Journal of Public Relations Research, 11(3), 205-242. Retrieved from http://comphacker.org/comp/engl338/files/2012/08/framing-and-public-relations.pdf https://doi.org/10.1207/s1532754xjprr1103_02
  30. Jiang, K., Barnett, G. A., & Taylor, L. D. (2016). Dynamics of culture frames in international news coverage: A semantic network analysis. International Journal of Communication, 10, 3710-3736.
  31. Jin, F., Dougherty, E., Saraf, P., Cao, Y., & Ramakrishnan, N. (2013, 8). Epidemiological modeling of news and rumors on twitter. Paper presented at The 7th SNA-KDD Workshop '13 (SNA-KDD '13), Chicago, IL, United States. Retrieved from http://people.cs.vt.edu/naren/papers/news-rumor-epi-snakdd13.pdf
  32. Johannessen, M. R. (2015). Please like and share! A frame analysis of opinion articles in online news. Proceedings of 7th International Conference on Electronic Participation (pp. 15-26). Retrieved from http://www.springer.com/cda/content/document/cda_downloaddocument/9783319224992-c2.pdf?SGWID=0-0-45-1524295-p177635808
  33. Kahn, K. F., & Kenny, P. (2002). The slant of the news: How editorial endorsements influence campaign coverage and citizens' view of candidates. The American Political Science Review, 96(2), 381-394. https://doi.org/10.1017/S0003055402000230
  34. Kapferer, J. N. (2013). Rumors: Uses, interpretations, and images. New Burswick & London: Transaction Publishers.
  35. Kiousis, S. (2004). Explicating media salience: A factor analysis of New York Times issue coverage during the 2000 U.S. presidential election. Journal of Communication, 54(1), 71-87. https://doi.org/10.1111/j.1460-2466.2004.tb02614.x
  36. Kostka, J., Anne, Y., & Wattenhofer, R. (2013). Word of mouth: Rumor dissemination in social networks. Retrieved from: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.139.395&rep=rep1&type=pdf
  37. Larcinese, V., Puglisi, R., & Snyder, Jr., J. M. (2007, 9). Partisan bias in economic news: Evidence on the agenda-setting behavior of U.S. newspapers [On-Line]. (PSPE working papers, 07-2007). London, UK: Department of Government, London School of Science. Retrieved from http://eprints.lse.ac.uk/25185/1/PSPE_WP7_07_%28LSERO%29.pdf
  38. Lee, J., Agrawal, M., & Rao, H. R. (2015). Message diffusion through social network service: The case of rumor and non-rumor related tweets during Boston bombing 2013. Information Systems Frontiers, 17(5), 997-1005. https://doi.org/10.1007/s10796-015-9568-z
  39. Levendusky, M. S. (2013). Why do partisan media polarize viewers?. American Journal of Political Science, 10, 1-13.
  40. London, S. (1993). How the media frames political issues. Retrieved from http://www.scottlondon.com/reports/frames.html
  41. Milburn, M. A., & McGrail, A. B. (1992). The dramatic presentation of news and its effects on cognitive complexity. International Society of Political Psychology, 13(4). 613-632. https://doi.org/10.2307/3791493
  42. Pak, A., & Paroubek, P. (2010). Twitter as a corpus for sentiment analysis and opinion mining. Proceedings of LREC, 2010. Retrieved from http://deepthoughtinc.com/wp-content/uploads/2011/01/Twitter-as-a-Corpus-for-Sentiment-Analysis-and-Opinion-Mining.pdf
  43. Pan, Z., & Kosicki, G. M. (1993). Framing analysis: An approach to news discourse. Political Communication, 10, 55-75. Retrieved from https://pdfs.semanticscholar.org/d356/ad4a6146fba5193fbdea2b1afdbbce8c8d39.pdf https://doi.org/10.1080/10584609.1993.9962963
  44. Prior, M. (2013). Media and polirical polarization. Annual Review of Political Science, 16, 101-127. https://doi.org/10.1146/annurev-polisci-100711-135242
  45. Ransohoff, D. F., & Ranshhoff, R. M. (2001). Sensationalism in the media: When scientists and journalists may be complicit collaborators. Effective Clinical Practice, 4, 185-188. Retrieved from https://www.upf.edu/pcstacademy/_docs/200108_ransohoff.pdf
  46. Ratkiewicz, J., Conover, M., Meiss, M., Goncalves, B., & Flammini, F. (2011). Detection and tracking political abuse in social media. Proceedings of the Fifth International AAAI Conference on Weblogs and Social Media (pp. 297-304). Retrieved from https://www.aaai.org/ocs/index.php/ICWSM/ICWSM11/paper/download/2850/3274
  47. Roberts, M., Wanta, W., & Dzwo, T.(2002). Agenda-setting and issue salience online. Communication Research, 29(4), 452-465. https://doi.org/10.1177/0093650202029004004
  48. Shoemaker, P., & Reese, P. (1992). Mediating the message. New York, NY: Routledge.
  49. Shoemaker, P., & Reese, P. (2014). Mediating the message in the 21st Century. New York, NY: Routledge.
  50. Silverman, C. (2014). Lies, damn lies, and viral content: How news websites spread (and debunk) online rumors, unverified claims, and misinformation (Tow Center for Digital Journalism A Tow/Knight Report). New York, NY: Columbia Journalism School. Retrieved from http://towcenter.org/wp-content/uploads/2015/02/LiesDamnLies_Silverman_TowCenter.pdf
  51. Tanaka, Y., Sakamoto, Y., & Matsuka, T. (2012). Transmission of rumor and criticism in Twitter after the Great Japan Earthquake. Sage Openacess. Retrieved from https://www.researchgate.net/publication/256035242_Transmission_of_Rumor_and_Criticism_in_Twitter_after_the_Great_Japan_Earthquake
  52. Trottier, D., & Fucks, C. (2015). Social media, politics and the state: Protests, revolutions, riots, crime and policing in the age of Facebook, Twitter and Youtube. New York, NY: Routledge.
  53. Wlezien, C. (2001). On the salience of political issues: The problem with 'most important problem'. Paper presented at the Southwest Political Science Association, New Orleans, LA.