DOI QR코드

DOI QR Code

Up-Regulation of RANK Expression via ERK1/2 by Insulin Contributes to the Enhancement of Osteoclast Differentiation

  • Oh, Ju Hee (Department of Medical Science, College of Medical Sciences, Soonchunhyang University) ;
  • Lee, Na Kyung (Department of Medical Science, College of Medical Sciences, Soonchunhyang University)
  • Received : 2017.02.15
  • Accepted : 2017.04.28
  • Published : 2017.05.31

Abstract

Despite the importance of the receptor activator of nuclear factor (NF)-kappaB ligand (RANKL)-RANK signaling mechanisms on osteoclast differentiation, little has been studied on how RANK expression is regulated or what regulates its expression during osteoclastogenesis. We show here that insulin signaling increases RANK expression, thus enhancing osteoclast differentiation by RANKL. Insulin stimulation induced RANK gene expression in time- and dose-dependent manners and insulin receptor shRNA completely abolished RANK expression induced by insulin in bone marrow-derived monocyte/macrophage cells (BMMs). Moreover, the addition of insulin in the presence of RANKL promoted RANK expression. The ability of insulin to regulate RANK expression depends on extracellular signal-regulated kinase 1/2 (ERK1/2) since only PD98059, an ERK1/2 inhibitor, specifically inhibited its expression by insulin. However, the RANK expression by RANKL was blocked by all three mitogen-activated protein (MAP) kinases inhibitors. The activation of RANK increased differentiation of BMMs into tartrate-resistant acid phosphatase-positive ($TRAP^+$) osteoclasts as well as the expression of dendritic cell-specific transmembrane protein (DC-STAMP) and d2 isoform of vacuolar ($H^+$) ATPase (v-ATPase) Vo domain (Atp6v0d2), genes critical for osteoclastic cell-cell fusion. Collectively, these results suggest that insulin induces RANK expression via ERK1/2, which contributes to the enhancement of osteoclast differentiation.

Acknowledgement

Supported by : National Research Foundation of Korea

References

  1. Boyle, W.J., Simonet, W.S., and Lacey, D.L. (2003). Osteoclast differentiation and activation. Nature 423, 337-342. https://doi.org/10.1038/nature01658
  2. Choi, H.K., Kang, H.R., Jung, E., Kim, T.E., Lin, J.J., and Lee, S.Y. (2013). Early estrogen-induced gene 1, a novel RANK signaling component, is essential for osteoclastogenesis. Cell Res. 23, 524-536. https://doi.org/10.1038/cr.2013.33
  3. Dougall, W.C., Glaccum, M., Charrier, K., Rohrbach, K., Brasel, K., De Smedt, T., Daro, E., Smith, J., Tometsko, M.E., Maliszewski, C.R., et al. (1999). RANK is essential for osteoclast and lymph node development. Genes. Dev. 13, 2412-2424. https://doi.org/10.1101/gad.13.18.2412
  4. Erbagci, A.B., Araz, M., Erbagci, A., Tarakcioglu, M., and Namiduru, E.S. (2002). Serum prolidase activity as a marker of osteoporosis in type 2 diabetes mellitus. Clin. Biochem. 35, 263-268. https://doi.org/10.1016/S0009-9120(02)00305-3
  5. Ferron, M., Wei, J., Yoshizawa, T., Del Fattore, A., DePinho, R.A., Teti, A., Ducy, P., and Karsenty, G. (2010). Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism. Cell 142, 296-308. https://doi.org/10.1016/j.cell.2010.06.003
  6. Fleischmann, A., Hafezi, F., Elliott, C., Reme, C.E., Ruther, U., and Wagner, E.F. (2000). Fra-1 replaces c-Fos-dependent functions in mice. Genes. Dev. 14, 2695-2700. https://doi.org/10.1101/gad.187900
  7. Fulzele, K., DiGirolamo, D.J., Liu, Z., Xu, J., Messina, J.L., and Clemens, T.L. (2007). Disruption of the insulin-like growth factor type 1 receptor in osteoblasts enhances insulin signaling and action. J. Biol. Chem. 282, 25649-25658. https://doi.org/10.1074/jbc.M700651200
  8. Fulzele, K., Riddle, R.C., DiGirolamo, D.J., Cao, X., Wan, C., Chen, D., Faugere, M.C., Aja, S., Hussain, M.A., Bruning, J.C., et al. (2010). Insulin receptor signaling in osteoblasts regulates postnatal bone acquisition and body composition. Cell 142, 309-319. https://doi.org/10.1016/j.cell.2010.06.002
  9. Harada, S., and Rodan, G.A. (2003). Control of osteoblast function and regulation of bone mass. Nature 423, 349-355. https://doi.org/10.1038/nature01660
  10. Hemingway, F., Taylor, R., Knowles, H.J., Athanasou, N.A. (2011). RANKL-independent human osteoclast formation with APRIL, BAFF, NGF, IGF I and IGF II. Bone 48, 938-944. https://doi.org/10.1016/j.bone.2010.12.023
  11. Hsu, H., Lacey, D.L., Dunstan, C.R., Solovyev, I., Colombero, A., Timms, E., Tan, H.L., Elliott, G., Kelley, M.J., Sarosi, I., et al. (1999). Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proc. Natl. Acad. Sci. U.S.A. 96, 3540-3545. https://doi.org/10.1073/pnas.96.7.3540
  12. Itonaga, I., Sabokbar, A., Sun, S.G., et al. (2004). Transforming growth factor-beta induces osteoclast formation in the absence of RANKL. Bone 34, 57-64. https://doi.org/10.1016/j.bone.2003.08.008
  13. Isaia, G.C., Ardissone, P., Di Stefano, M., Ferrari, D., Martina, V., Porta, M., Tagliabue, M., and Molinatti, G.M. (1999). Bone metabolism in type 2 diabetes mellitus. Acta. Diabetol. 36, 35-38. https://doi.org/10.1007/s005920050142
  14. Kemink, S.A., Hermus, A.R., Swinkels, L.M., Lutterman, J.A., and Smals, A.G. (2000). Osteopenia in insulin-dependent diabetes mellitus; prevalence and aspects of pathophysiology. J. Endocrinol. Invest. 23, 295-303. https://doi.org/10.1007/BF03343726
  15. Kim, H.S. and Lee, N.K. (2014). Gene expression profiling in osteoclast precursors by insulin using microarray analysis. Mol. Cells 37, 827-832. https://doi.org/10.14348/molcells.2014.0223
  16. Kim, K., Lee, S.H., Ha Kim, J., Choi, Y., and Kim, N. (2008). NFATc1 induces osteoclast fusion via up-regulation of Atp6v0d2 and the dendritic cell-specific transmembrane protein (DC-STAMP). Mol. Endocrinol. 22, 176-185. https://doi.org/10.1210/me.2007-0237
  17. Kudo, O., Sabokbar, A., Pocock, A., Itonaga, I., Fujikawa, Y., Athanasou, N.A. (2003). Interleukin-6 and interleukin-11 support human osteoclast formation by a RANKL-independent mechanism. Bone 32,1-7. https://doi.org/10.1016/S8756-3282(02)00915-8
  18. Lacey, D.L., Timms, E., Tan, H.L., Kelley, M.J., Dunstan, C.R., Burgess, T., Elliott, R., Colombero, A., Elliott, G., Scully, S., et al. (1998). Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93, 165-176. https://doi.org/10.1016/S0092-8674(00)81569-X
  19. Lee, N.K. (2010). Molecular Understanding of Osteoclast Differentiation and Physiology. EnM. 25, 264-269.
  20. Lee, J.Y., and Lee, N.K. (2014) Up-regulation of cyclinD1 and Bcl2A1 by insulin is involved in osteoclast proliferation. Life sci. 114, 57-61. https://doi.org/10.1016/j.lfs.2014.07.006
  21. Lee, S.H., Rho, J., Jeong, D., Sul, J.Y., Kim, T., Kim, N., Kang, J.S., Miyamoto, T., Suda, T., Lee, S.K., et al. (2006). v-ATPase V0 subunit d2-deficient mice exhibit impaired osteoclast fusion and increased bone formation. Nat. Med. 12, 1403-1409. https://doi.org/10.1038/nm1514
  22. Li, J., Sarosi, I., Yan, X.Q., Morony, S., Capparelli, C., Tan, H.L., McCabe, S., Elliott, R., Scully, S., Van, G., et al. (2000). RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proc. Natl. Acad. Sci. U.S.A. 97, 1566-1571. https://doi.org/10.1073/pnas.97.4.1566
  23. Luchin, A., Suchting, S., Merson, T., Rosol, T.J., Hume, D.A., Cassady, A.I., and Ostrowski, M.C. (2001). Genetic and physical interactions between Microphthalmia transcription factor and PU.1 are necessary for osteoclast gene expression and differentiation. J. Biol. Chem. 276, 36703-36710. https://doi.org/10.1074/jbc.M106418200
  24. Manolagas, S.C. (2000) Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr. Rev. 21, 115-137.
  25. Matsuo, K., Owens, J.M., Tonko, M., Elliott, C., Chambers, T.J., and Wagner, E.F. (2000). Fosl1 is a transcriptional target of c-Fos during osteoclast differentiation. Nat. Genet. 24, 184-187. https://doi.org/10.1038/72855
  26. Ogata, N., Chikazu, D., Kubota, N., Terauchi, Y., Tobe, K., Azuma, Y., Ohta, T., Kadowaki, T., Nakamura, K., and Kawaguchi, H. (2000). Insulin receptor substrate-1 in osteoblast is indispensable for maintaining bone turnover. J. Clin. Invest. 105, 935-943. https://doi.org/10.1172/JCI9017
  27. Oh, J.H., Lee, J.Y., Joung, S.H., Oh, Y.T., Kim, H.S., and Lee, N.K. (2015a). Insulin enhances RANKL-induced osteoclastogenesis via ERK1/2 activation and induction of NFATc1 and Atp6v0d2. Cell. Signal. 27, 2325-2331. https://doi.org/10.1016/j.cellsig.2015.09.002
  28. Oh, J.H., Lee, J.Y., Park, J.H., No, J.H., and Lee, N.K. (2015b). Obatoclax regulates the proliferation and fusion of osteoclast precursors through the inhibition of ERK activation by RANKL. Mol. Cells 38, 279-284. https://doi.org/10.14348/molcells.2015.2340
  29. Rodan, G.A. and Martin, T.J. (2000). Therapeutic approaches to bone diseases. Science 289, 1508-1514. https://doi.org/10.1126/science.289.5484.1508
  30. Suda, T., Takahashi, N., Udagawa, N., Jimi, E., Gillespie, M.T., and Martin, T.J. (1999). Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr. Rev. 20, 345-357. https://doi.org/10.1210/edrv.20.3.0367
  31. Takayanagi, H., Kim, S., Koga, T., Nishina, H., Isshiki, M., Yoshida, H., Saiura, A., Isobe, M., Yokochi, T., Inoue, J., et al. (2002). Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev. Cell 3, 889-901. https://doi.org/10.1016/S1534-5807(02)00369-6
  32. Teitelbaum, S.L. (2000). Bone resorption by osteoclasts. Science 289, 1504-1508. https://doi.org/10.1126/science.289.5484.1504
  33. Thrailkill, K.M., Lumpkin, C.K., Jr., Bunn, R.C., Kemp, S.F., and Fowlkes, J.L. (2005). Is insulin an anabolic agent in bone? Dissecting the diabetic bone for clues. Am. J. Physiol. Endocrinol. Metab. 289, E735-745. https://doi.org/10.1152/ajpendo.00159.2005
  34. Vestergaard, P. (2007). Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes-a metaanalysis. Osteoporos. Int. 18, 427-444. https://doi.org/10.1007/s00198-006-0253-4
  35. Yagi, M., Miyamoto, T., Sawatani, Y., Iwamoto, K., Hosogane, N., Fujita, N., Morita, K., Ninomiya, K., Suzuki, T., Miyamoto, K., et al. (2005). DC-STAMP is essential for cell-cell fusion in osteoclasts and foreign body giant cells. J. Exp. Med. 202, 345-351. https://doi.org/10.1084/jem.20050645
  36. Yang, J., Zhang, X., Wang, W., and Liu, J. (2010). Insulin stimulates osteoblast proliferation and differentiation through ERK and PI3K in MG-63 cells. Cell. Biochem. Funct. 28, 334-341. https://doi.org/10.1002/cbf.1668
  37. Yasuda, H., Shima, N., Nakagawa, N., Yamaguchi, K., Kinosaki, M., Mochizuki, S., Tomoyasu, A., Yano, K., Goto, M., Murakami, A., et al. (1998). Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc. Natl. Acad. Sci. USA 95, 3597-3602. https://doi.org/10.1073/pnas.95.7.3597

Cited by

  1. Constant hypoxia inhibits osteoclast differentiation and bone resorption by regulating phosphorylation of JNK and IκBα vol.68, pp.2, 2019, https://doi.org/10.1007/s00011-018-1209-9