Characterization of αX I-Domain Binding to Receptors for Advanced Glycation End Products (RAGE)

  • Buyannemekh, Dolgorsuren (Divisions of Science Education and Biology, Kangwon National University) ;
  • Nham, Sang-Uk (Divisions of Science Education and Biology, Kangwon National University)
  • Received : 2017.02.10
  • Accepted : 2017.04.27
  • Published : 2017.05.31


The ${\beta}2$ integrins are cell surface transmembrane proteins regulating leukocyte functions, such as adhesion and migration. Two members of ${\beta}2$ integrin, ${\alpha}M{\beta}2$ and ${\alpha}X{\beta}2$, share the leukocyte distribution profile and integrin ${\alpha}X{\beta}2$ is involved in antigen presentation in dendritic cells and transendothelial migration of monocytes and macrophages to atherosclerotic lesions. ${\underline{R}}eceptor$ for ${\underline{a}}dvanced$ ${\underline{g}}lycation$ ${\underline{e}}nd$ ${\underline{p}}roducts$ (RAGE), a member of cell adhesion molecules, plays an important role in chronic inflammation and atherosclerosis. Although RAGE and ${\alpha}X{\beta}2$ play an important role in inflammatory response and the pathogenesis of atherosclerosis, the nature of their interaction and structure involved in the binding remain poorly defined. In this study, using I-domain as a ligand binding motif of ${\alpha}X{\beta}2$, we characterize the binding nature and the interacting moieties of ${\alpha}X$ I-domain and RAGE. Their binding requires divalent cations ($Mg^{2+}$ and $Mn^{2+}$) and shows an affinity on the sub-micro molar level: the dissociation constant of ${\alpha}X$ I-domains binding to RAGE being $0.49{\mu}M$. Furthermore, the ${\alpha}X$ I-domains recognize the V-domain, but not the C1 and C2-domains of RAGE. The acidic amino acid substitutions on the ligand binding site of ${\alpha}X$ I-domain significantly reduce the I-domain binding activity to soluble RAGE and the alanine substitutions of basic amino acids on the flat surface of the V-domain prevent the V-domain binding to ${\alpha}X$ I-domain. In conclusion, the main mechanism of ${\alpha}X$ I-domain binding to RAGE is a charge interaction, in which the acidic moieties of ${\alpha}X$ I-domains, including E244, and D249, recognize the basic residues on the RAGE V-domain encompassing K39, K43, K44, R104, and K107.


Supported by : Kangwon National University


  1. Arnaout, M.A. (2002). Integrin structure: new twists and turns in dynamic cell adhesion, Immunol. Rev. 186, 125-140.
  2. Baker, N.A., Sept, D., Joseph, S., Holst, M.J., and McCammon, J.A. (2001). Electrostatics of nanosystems: application to microtubules and the ribosome. Proc. Natl. Acad. Sci. USA 98, 10037-10041.
  3. Chavakis, T., Bierhaus, A., Al-Fakhri, N., Schneider, D., Witte, S., Linn, T., Nagashima, M., Morser, J., Arnold, B., Preissner, K.T., et al. (2003). The pattern recognition receptor (RAGE) is a counterreceptor for leukocyte integrins: a novel pathway for inflammatory cell recruitment. J. Exp. Med. 198, 1507-1515.
  4. Choi, J., Leyton, L., and Nham, S.-U. (2005). Characterization of ${\alpha}$X Idomain binding to Thy-1. Biochem. Biophy. Res. Comm. 331, 557-561.
  5. Choi, J., Choi, J., and Nham, S.-U. (2010). Characterization of the residues of ${\alpha}$X I-domain and ICAM-1 mediating their interactions. Mol. Cells 30, 227-234.
  6. Deane, R., Yan, S.D., Submamaryan, R.K., LaRue, B., Jovanovic, S., Hogg, E., Welch, D., Manness, L., Lin, C., Yu, J., et al. (2003). RAGE mediates amyloid-beta peptide transport across the blood-brain barrier and accumulation in brain. Nat. Med. 9, 907-913.
  7. Foster, G.A., Xu, L., Chidambaram, A.A., Soderberg, S.R., Armstrong, E.J., Wu, H., and Simon, S.I. (2015). CD11c/CD18 signals Very Late Antigen-4 activation to initiate foamy monocyte recruitment during the onset of hypercholesterolemia. J. Immunol.195, 5380-5392.
  8. Frommhold, D., Kamphues,A., Hepper, I., Pruenster, M., Lukic, I.K., Socher, I., Zablotskaya, V., Buschmann, K., Lange-Sperandio, B., Schymeinsky, J., et al. (2010). RAGE and ICAM-1 cooperate in mediating leukocyte recruitment during acute inflammation in vivo. Blood 116, 841-849.
  9. Gang, J., Choi, J., Lee, J.H., and Nham, S.-U. (2007). Identification of critical residues for plasminogen binding by the ${\alpha}$X I-domain of the ${\beta}$2 integrin, ${\alpha}$X${\beta}$2, Mol. Cells 24, 240-246.
  10. Higgins, D.R. (1995). Heterologous protein expression in the methylotrophic yeast Pichia pastoris, in: J.E. Coligan, B.M. Dunn, H.L. Ploegh, D.W. Speicher, P.T. Wingfield., eds., (Current protocols in protein science, John Wiley & Sons, Inc.), pp. 5.7.1-5.7.16.
  11. Hofmann, M.A., Drury, S., Fu, C., Qu, W., Taguchi, A., Lu, Y., Avila, C., Kambham, N., Bierhaus, A., Nawroth, P., et al. (1999). RAGE mediates a novel proinflammatory axis: a central cell surface receptor for S100/calgranulin polypeptides. Cell 97, 889-901.
  12. Hogg, N., Takacs, L., Palmer, D.G., Selvendran, Y., and Allen, C. (1986). The p150,95 molecule is a marker of human mononuclear phagocytes: comparison with expression of class II molecules. Eur. J. Immunol. 16, 240-248.
  13. Hori, O., Brett, J., Slattery, T., Cao, R., Zhang, J., Chen, J.X., Nagashima, M., Lundh, E.R., Vijay, S., Nitecki, D., et al. (1995). The receptor for advanced glycation end products (RAGE) is a cellular binding site for amphoterin. J. Biol. Chem. 270, 25752-25761.
  14. Hynes, R.O. (2002). Integrins: bidirectional, allosteric signaling machines. Cell 110, 673-687.
  15. Kierdorf, K., and Fritz, G. (2013). RAGE regulation and signaling in inflammation and beyond. J. Leukoc. Biol. 94, 55-68.
  16. Koch, M., Chitayat, S., Dattilo, B.M., Schiefner, A., Diez, J., Chazin, W.J., and Fritz, G. (2010). Structural basis for ligand recognition and activation of RAGE. Structure 18, 1342-1352.
  17. Korndorfer, I. P., Brueckner, F., and Skerra, A. (2007). The crystal structure of the human (S100A8/S100A9)2 heterotetramer, calprotectin, illustrates how conformational changes of interacting alpha-helices can determine specific association of two EF-hand proteins. J. Mol. Biol. 370, 887-898.
  18. Leclerc, E., Fritz, G., Weibel, M., Heizmann, C.W., and Galichet, A. (2007). S100B and S100A6 differentially modulate cell survival by interacting with distinct RAGE (receptor for advanced glycation end products) immunoglobulin domains. J. Biol. Chem. 282, 31317-31331.
  19. Lee, J.O., Rieu, P., Arnaout, M.A., and Liddington, R.C. (1995). Crystal structure of the A domain from the ${\alpha}$ subunit of integrin CR3 (CD11b/CD18). Cell 80, 631-638.
  20. Lee, J.H., Choi, J., and Nham, S.-U. (2007). Critical residues of ${\alpha}$X Idomain recognizing fibrinogen central domain. Biochem. Biophys. Res. Comm. 355, 1058-1063.
  21. Luo, B.-H., Carman, C.V., and Springer, T.A. (2007). Structural basis of integrin regulation and signaling. Annu. Rev. Immunol. 25, 619-647
  22. Matsumoto, S., Yoshida,T., Murata, H., Harada, S., Fujita, N., Nakamura, S., Yamamoto, Y., Watanabe, T., Yonekura, H., Yamamoto, H., et al. (2008). Solution structure of the variable-type domain of the receptor for advanced glycation end products: new insight into AGE-RAGE interaction. Biochemistry 47, 12299-12311.
  23. Meunier, L., Bohjanen, K., Voorhees, J.J., and Cooper, K.D. (1994). Retinoic acid upregulates human Langerhans cell antigen presentation and surface expression of HLA-DR and CD11c, a ${\beta}$2 integrin critically involved in T-cell activation. J. Invest. Dermatol. 103, 775-779.
  24. Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., and Ferrin, T.E. (2004). UCSF Chimera-a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605-1612.
  25. Sambrook, J., and Russell, D.W. (2001). Purification of histidinetagged proteins by immobilized $Ni^{2+}$ absorption chromatography, in: Molecular Cloning, a laboratory manual, (Cold Spring Harbor Laboratory Press, New York), pp. 15.44-15.48.
  26. Sims, G.P., Rowe, D.C., Rietdijk, S.T., Herbst, R., and Coyle, A.J. (2010). HMGB1 and RAGE in inflammation and cancer. Annu. Rev. Immunol. 28, 367-388.
  27. Sousa, M.M., Yan, S.D., Stern, D., and Saraiva, J.M. (2000). Interaction of the receptor for advanced glycation end products (RAGE) with transthyretin triggers nuclear transcription factor kB (NFkB) activation. Lab. Invest. 80, 1101-1110.
  28. Stacker, S.A., and Springer, T.A. (1991). Leukocyte integrin P150,95 (CD11c/CD18) functions as an adhesion molecule binding to a counter-receptor on stimulated endothelium. J. Immunol. 146, 648-655.
  29. Sturchler, E., Galichet, A., Weibel, M., Leclerc, E., and Heizmann, C.W. (2008). Site-specific blockade of RAGE-Vd prevents amyloid-${\beta}$oligomer neurotoxicity. J. Neurosci. 28, 5149-5158.
  30. Tan, S. M. (2012). The leucocyte ${\beta}$2 (CD18) integrins: the structure, functional regulation and signaling properties. Biosci. Rep. 32, 241-269.
  31. Vorup-Jensen, T., Ostermeier, C., Shimaoka, M., Hommel, U., and Springer, T.A. (2003). Structure and allosteric regulation of the ${\alpha}$X${\beta}$2 integrin I-domain. Proc. Natl. Acad. Sci. USA 100, 1873-1878.
  32. Vorup-Jensen, T., Carman, C.V., Shimaoka, M., Schuck, P., Svitel, J., and Springer, T.A. (2005). Exposure of acidic residues as a danger signal for recognition of fibrinogen and other macromolecules by integrin ${\alpha}$X${\beta}$2. Proc. Natl. Acad. Sci. U S A. 102, 1614-1619.
  33. Wu, H., Gower, R.M., Wang, H., Perrard, X.-Y., Ma, R., Bullard, D.C., Burns, A.R., Paul, A., Smith, C.W., Simon, S.I., et al. (2009). Functional role of $CD11c^+$ monocytes in atherogenesis associated with hypercholesterolemia. Circulation 119, 2708-2717.
  34. Xiong, J.P., Li, R., Essafi, M., Stehle, T., and Arnaout, M.A. (2000). An isoleucine-based allosteric switch controls affinity and shape shifting in integrin CD11b A-domain. J. Biol. Chem. 275, 38762-38768.
  35. Zen, K., Chen, C.X., Chen, Y.T., Wilton, R., and Liu, Y. (2007). Receptor for advanced glycation endproducts mediates neutrophil migration across intestinal epithelium. J. Immunol. 178, 2483-2490.
  36. Zieman, S.J., and Kass, D.A. (2004). Advanced glycation endproduct crosslinking in the cardiovascular system: potential therapeutic target for cardiovascular disease. Drugs 64, 459-470.