DOI QR코드

DOI QR Code

DDX53 Regulates Cancer Stem Cell-Like Properties by Binding to SOX-2

  • Kim, Youngmi (Department of Biochemistry, Kangwon National University) ;
  • Yeon, Minjeong (Department of Biochemistry, Kangwon National University) ;
  • Jeoung, Dooil (Department of Biochemistry, Kangwon National University)
  • Received : 2017.01.04
  • Accepted : 2017.04.14
  • Published : 2017.05.31

Abstract

This study investigated the role of cancer/testis antigen DDX53 in regulating cancer stem cell-like properties. DDX53 shows co-expression with CD133, a marker for cancer stem cells. DDX53 directly regulates the SOX-2 expression in anti-cancer drug-resistant $Malme3M^R$ cells. DDX53 and miR-200b were found to be involved in the regulation of tumor spheroid forming potential of Malme3M and $Malme3M^R$ cells. Furthermore, the self-renewal activity and the tumorigenic potential of $Malme3M^R$-CD133 (+) cells were also regulated by DDX53. A miR-200b inhibitor induced the direct regulation of SOX-2 by DDX53 We therefore, conclude that DDX53 may serve as an immunotherapeutic target for regulating cancer stem-like properties of melanomas.

Acknowledgement

Supported by : National Research Foundation, Kangwon National University

References

  1. Ahmad, A., Maitah, M.Y., Ginnebaugh, K.R., Li, Y., Bao, B., Gadgeel, S.M., and Sarkar, F.H. (2013). Inhibition of Hedgehog signaling sensitizes NSCLC cells to standard therapies through modulation of EMT-regulating miRNAs. J. Hematol. Oncol. 6, 77. https://doi.org/10.1186/1756-8722-6-77
  2. Chien, C.S., Wang, M.L., Chu, P.Y., Chang, Y.L., Liu, W.H., Yu, C.C., Lan, Y.T., Huang, P.I., Lee, Y.Y., Chen, Y.W., et al. (2015). Lin28B/Let-7 regulates expression of Oct4 and Sox2 and reprograms oral squamous cell carcinoma cells to a stem-like state. Cancer Res. 75, 2553-2565. https://doi.org/10.1158/0008-5472.CAN-14-2215
  3. Cho, B., Lim, Y., Lee, D.Y., Park, S.Y., Lee, H., Kim, W.H., Yang, H., Bang, Y.J., and Jeoung, D.I. (2002). Identification and characterization of a novel cancer/testis antigen gene CAGE. Biochem. Biophys. Res. Commun. 292, 715-726. https://doi.org/10.1006/bbrc.2002.6701
  4. Cho, B., Lee, H., Jeong, S., Bang, Y.J., Lee, H.J., Hwang, K.S., Kim, H.Y., Lee, Y.S., Kang, G.H., and Jeoung, D.I. (2003). Promoter hypomethylation of a novel cancer/testis antigen gene CAGE is correlated with its aberrant expression and is seen in premalignant stage of gastric carcinoma. Biochem. Biophys. Res. Commun. 307, 52-63. https://doi.org/10.1016/S0006-291X(03)01121-5
  5. Cho, Y.H., Han, K.M., Kim, D., Lee, J., Lee, S.H., Choi, K.W., Kim, J., and Han, Y.M. (2014). Autophagy regulates homeostasis of pluripotency-associated proteins in hESCs. Stem Cells 32, 424-435. https://doi.org/10.1002/stem.1589
  6. Chung, H.J., Choi, Y.E., Kim, E.S., Han, Y.H., Park, M.J., and Bae, I.H. (2015). miR-29b attenuates tumorigenicity and stemness maintenance in human glioblastoma multiforme by directly targeting BCL2L2. Oncotarget 6, 18429-18444. https://doi.org/10.18632/oncotarget.4384
  7. Cox, J.L., Mallanna, S.K., Luo, X., and Rizzino, A. (2010). Sox2 uses multiple domains to associate with proteins present in Sox2-protein complexes. PLoS One 5, e15486. https://doi.org/10.1371/journal.pone.0015486
  8. Du, J., Liu, S., He, J., Liu, X., Qu, Y., Yan, W., Fan, J., Li, R., Xi, H., Fu, W., et al. (2015). MicroRNA-451 regulates stemness of side population cells via PI3K/Akt/mTOR signaling pathway in multiple myeloma. Oncotarget 6, 14993-15007. https://doi.org/10.18632/oncotarget.3802
  9. Iwata, T., Fujita, T., Hirao, N., Matsuzaki, Y., Okada, T., Mochimaru, H., Susumu, N., Matsumoto, E., Sugano, K., Yamashita, N., Nozawa, S., and Kawakami, Y. (2005). Frequent immune responses to a cancer/testis antigen, CAGE, in patients with microsatellite instabilitypositive endometrial cancer. Clin. Cancer Res. 11, 3949-3957. https://doi.org/10.1158/1078-0432.CCR-04-1702
  10. Jiang, J., Li, Z., Yu, C., Chen, M., Tian, S., and Sun, C. (2015). MiR-1181 inhibits stem cell-like phenotypes and suppresses SOX2 and STAT3 in human pancreatic cancer. Cancer Lett. 356, 962-970. https://doi.org/10.1016/j.canlet.2014.11.007
  11. Kim, Y., Park, H., Park, D., Lee, Y.S., Choe, J., Hahn, J.H., Lee, H., Kim, Y.M., and Jeoung, D. (2010). Cancer/testis antigen CAGE exerts negative regulation on p53 expression through HDAC2 and confers resistance to anti-cancer drugs. J. Biol. Chem. 285, 25957-25968. https://doi.org/10.1074/jbc.M109.095950
  12. Kim, Y., Park, D., Kim, H., Choi, M., Lee, H., Lee, Y.S., Choe, J., Kim, Y.M., and Jeoung, D. (2013). miR-200b and cancer/testis antigen CAGE form a feedback loop to regulate the invasion and tumorigenic and angiogenic responses of a cancer cell line to microtubuletargeting drugs. J. Biol. Chem. 288, 36502-36518. https://doi.org/10.1074/jbc.M113.502047
  13. Kim, Y., Kim, H., Park, H., Park, D., Lee, H., Lee, Y.S., Choe, J., Kim, Y.M., and Jeoung, D. (2014). miR-326-histone deacetylase-3 feedback loop regulates the invasion and tumorigenic and angiogenic response to anti-cancer drugs. J. Biol. Chem. 289, 28019-28039. https://doi.org/10.1074/jbc.M114.578229
  14. Kim, Y., Kim, H., Park, D., and Jeoung, D. (2015). miR-335 Targets SIAH2 and confers sensitivity to anti-cancer drugs by increasing the expression of HDAC3. Mol. Cells 38, 562-572. https://doi.org/10.14348/molcells.2015.0051
  15. Kim, Y., Kim, H., Park, D., Han, M., Lee, H., Lee, Y.S., Choe, J., Kim, Y.M., and Jeoung, D. (2016). miR-217 and CAGE form feedback loop and regulates the response to anti-cancer drugs through EGFR and HER2. Oncotarget 7, 10297-10321. https://doi.org/10.18632/oncotarget.7185
  16. Liggins, A.P., Lim, S.H., Soilleux, E.J., Pulford, K., and Banham, A.H. (2010). A panel of cancer-testis genes exhibiting broad-spectrum expression in haematological malignancies. Cancer Immun. 10, 8.
  17. Lopez-Bertoni, H., Lal, B., Li, A., Caplan, M., Guerrero-Cazares, H., Eberhart, C.G., Quinones-Hinojosa, A., Glas, M., Scheffler, B., Laterra, J., and Li, Y. (2015). DNMT-dependent suppression of microRNA regulates the induction of GBM tumor-propagating phenotype by Oct4 and Sox2. Oncogene 34, 3994-4004. https://doi.org/10.1038/onc.2014.334
  18. Lu, Y.X., Yuan, L., Xue, X.L., Zhou, M., Liu, Y., Zhang, C., Li, J.P., Zheng, L., Hong, M., and Li, X.N. (2014). Regulation of colorectal carcinoma stemness, growth, and metastasis by an miR-200c-Sox2-negative feedback loop mechanism. Clin. Cancer Res. 20, 2631-2642. https://doi.org/10.1158/1078-0432.CCR-13-2348
  19. Ma, K., Pan, X., Fan, P., He, Y., Gu, J., Wang, W., Zhang, T., Li, Z., and Luo, X. (2014). Loss of miR-638 in vitro promotes cell invasion and a mesenchymal-like transition by influencing SOX2 expression in colorectal carcinoma cells. Mol. Cancer 13, 118. https://doi.org/10.1186/1476-4598-13-118
  20. Murakami, A., Takahashi, F., Nurwidya, F., Kobayashi, I., Minakata, K., Hashimoto, M., Nara, T., Kato, M., Tajima, K., Shimada, N., et al. (2014). Hypoxia increases gefitinib-resistant lung cancer stem cells through the activation of insulin-like growth factor 1 receptor. PLoS One 9, e86459. https://doi.org/10.1371/journal.pone.0086459
  21. Ojha, R., Jha, V., Singh, S.K., and Bhattacharyya, S. (2014). Autophagy inhibition suppresses the tumorigenic potential of cancer stem cell enriched side population in bladder cancer. Biochim. Biophys. Acta. 1842, 2073-2086. https://doi.org/10.1016/j.bbadis.2014.07.007
  22. Ozen, M., Karatas, O.F., Gulluoglu, S., Bayrak, O.F., Sevli, S., Guzel, E., Ekici, I.D., Caskurlu, T., Solak, M., Creighton, C.J., et al. (2015). Overexpression of miR-145-5p inhibits proliferation of prostate cancer cells and reduces SOX2 expression. Cancer Invest. 33, 251-258. https://doi.org/10.3109/07357907.2015.1025407
  23. Park, D., Park, H., Kim, Y., Kim, H., and Jeoung, D. (2014a). HDAC3 acts as a negative regulator of angiogenesis. BMB Rep. 47, 227-232. https://doi.org/10.5483/BMBRep.2014.47.4.128
  24. Park, H., Kim, Y., Park, D., and Jeoung, D. (2014b). Nuclear localization signal domain of HDAC3 is necessary and sufficient for the expression regulation of MDR1. BMB Rep. 47, 342-347. https://doi.org/10.5483/BMBRep.2014.47.6.169
  25. Por, E., Byun, H.J., Lee, E.J., Lim, J.H., Jung, S.Y., Park, I., Kim, Y.M., Jeoung, D.I., and Lee, H. (2010). The cancer/testis antigen CAGE with oncogenic potential stimulates cell proliferation by up-regulating cyclins D1 and E in an AP-1- and E2F-dependent manner. J. Biol. Chem. 285, 14475-14485. https://doi.org/10.1074/jbc.M109.084400
  26. Shankar, S., Nall, D., Tang, S.N., Meeker, D., Passarini, J., Sharma, J., and Srivastava, R.K. (2011). Resveratrol inhibits pancreatic cancer stem cell characteristics in human and KrasG12D transgenic mice by inhibiting pluripotency maintaining factors and epithelialmesenchymal transition. PLoS One 6, e16530. https://doi.org/10.1371/journal.pone.0016530
  27. Wang, Y., Tian, Y., Morley, M.P., Lu, M.M., Demayo, F.J., Olson, E.N., and Morrisey, E.E. (2013). Development and regeneration of Sox2+ endoderm progenitors are regulated by a Hdac1/2-Bmp4/Rb1 regulatory pathway. Dev. Cell 24, 345-358. https://doi.org/10.1016/j.devcel.2013.01.012
  28. Yang, P., Huo, Z., Liao, H., and Zhou, Q. (2015). Cancer/testis antigens trigger epithelial-mesenchymal transition and genesis of cancer stem-like cells. Curr. Pharm. Des. 21, 1292-1300. https://doi.org/10.2174/1381612821666141211154707
  29. Yin, B., Zeng, Y., Liu, G., Wang, X., Wang, P., and Song, Y. (2014). MAGE-A3 is highly expressed in a cancer stem cell-like side population of bladder cancer cells. Int. J. Clin. Exp. Pathol. 7, 2934-2941.