The Expanding Significance of Inositol Polyphosphate Multikinase as a Signaling Hub

  • Kim, Eunha (Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Ahn, Hyoungjoon (Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Kim, Min Gyu (Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Lee, Haein (Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Kim, Seyun (Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST))
  • Received : 2017.04.26
  • Accepted : 2017.05.17
  • Published : 2017.05.31


The inositol polyphosphates are a group of multifunctional signaling metabolites whose synthesis is catalyzed by a family of inositol kinases that are evolutionarily conserved from yeast to humans. Inositol polyphosphate multikinase (IPMK) was first identified as a subunit of the arginine-responsive transcription complex in budding yeast. In addition to its role in the production of inositol tetrakis- and pentakisphosphates ($IP_4$ and $IP_5$), IPMK also exhibits phosphatidylinositol 3-kinase (PI3-kinase) activity. Through its PI3-kinase activity, IPMK activates Akt/PKB and its downstream signaling pathways. IPMK also regulates several protein targets non-catalytically via protein-protein interactions. These non-catalytic targets include cytosolic signaling factors and transcription factors in the nucleus. In this review, we highlight the many known functions of mammalian IPMK in controlling cellular signaling networks and discuss future challenges related to clarifying the unknown roles IPMK plays in physiology and disease.


Supported by : National Research Foundation of Korea


  1. Ahmed, I., Sbodio, J.I., Harraz, M.M., Tyagi, R., Grima, J.C., Albacarys, L.K., Hubbi, M.E., Xu, R., Kim, S., Paul, B.D., et al. (2015). Huntington's disease: Neural dysfunction linked to inositol polyphosphate multikinase. Proc. Natl. Acad. Sci. USA 112, 9751-9756.
  2. Akira, S., Takeda, K., and Kaisho, T. (2001). Toll-like receptors : critical proteins linking innate and acquired immunity. Nat. Immunol. 2, 675-80.
  3. Alessi, D.R., Sakamoto, K., and Bayascas, J.R. (2006). LKB1-dependent signaling pathways. Annu. Rev. Biochem. 75, 137-163.
  4. Bang, S., Kim, S., Dailey, M.J., Chen, Y., Moran, T.H., Snyder, S.H., and Kim, S.F. (2012). AMP-activated protein kinase is physiologically regulated by inositol polyphosphate multikinase. Proc. Natl. Acad. Sci. USA 109, 616-620.
  5. Bang, S., Chen, Y., Ahima, R.S., and Kim, S.F. (2014). Convergence of IPMK and LKB1-AMPK signaling pathways on metformin action. Mol. Endocrinol. 28, 1186-1193.
  6. Bartsch, D., Casadio, A., Karl, K.A., Serodio, P., and Kandel, E.R. (1998). CREB1 encodes a nuclear activator, a repressor, and a cytoplasmic modulator that form a regulatory unit critical for longterm facilitation. Cell 95, 211-223.
  7. Bechet, J., Greenson, M., and Wiame, J.M. (1970). Mutations affecting the repressibility of arginine biosynthetic enzymes in Saccharomyces cerevisiae. Eur. J. Biochem. 12, 31-39.
  8. Bercy, J., Dubois, E., and Messenguy, F. (1987). Regulation of arginine metabolism in Saccharomyces cerevisiae: expression of the three ARGR regulatory genes and cellular localization of their products. Gene 55, 277285.
  9. Berridge, M.J., Lipp, P., and Bootman, M.D. (2000). The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell Biol. 1, 1121.
  10. Blind, R.D. (2013). Disentangling biological signaling networks by dynamic coupling of signaling lipids to modifying enzymes. Adv. Biol. Regul. 54, 114.
  11. Blind, R.D., Suzawa, M., and Ingraham, H.A. (2012). Direct modification and regulation of a nuclear receptor-PIP2 complex by the nuclear inositol-lipid kinase IPMK. Sci. Signal. 5, 110.
  12. Bourtchuladze, R., Frenguelli, B., Blendy, J., Cioffi, D., Schutz, G., and Silva, A.J. (1994). Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell 79, 5968.
  13. Brady, C.A., and Attardi, L.D. (2010). p53 at a glance. J. Cell Sci. 123, 25272532.
  14. Carmody, S.R., and Wente, S.R. (2009). mRNA nuclear export at a glance. J. Cell Sci. 122, 1933-1937.
  15. Chakraborty, A., Kim, S., and Snyder, S.H. (2011). Inositol pyrophosphates as mammalian cell signals. Sci. Signal. 4, 1-11.
  16. Chen, Z., Trotman, L.C., Shaffer, D., Lin, H.-K., Dotan, Z.A., Niki, M., Koutcher, J.A., Scher, H.I., Ludwig, T., Gerald, W., et al. (2005). Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 436, 725-730.
  17. Christ, C., and Tye, B.K. (1991). Functional domains of the yeast transcription/replication factor MCM1. Genes Dev. 5, 751-763.
  18. Cole, R.L., Konradi, C., Douglass, J., and Hyman, S.E. (1995). Neuronal adaptation to amphetamine and dopamine: molecular mechanisms of prodynorphin gene regulation in rat striatum. Neuron 14, 813-823.
  19. Colin, E., Regulier, E., Perrin, V., Durr, A., Brice, A., Aebischer, P., Deglon, N., Humbert, S., and Saudou, F. (2005). Akt is altered in an animal model of Huntington's disease and in patients. Eur. J. Neurosci. 21, 1478-1488.
  20. Collado, M., Gil, J., Efeyan, A., Guerra, C., Schuhmacher, A.J., Barradas, M., Benguria, A., Zaballos, A., Flores, J.M., Barbacid, M., et al. (2005). Tumour biology: senescence in premalignant tumours. Nature 436, 642.
  21. Curran, T., and Morgan, J.I. (1985). Superinduction of c-fos by nerve growth factor in the presence of peripherally active benzodiazepines. Science 229, 1265-1268.
  22. Deng, L., Wang, C., Spencer, E., Yang, L., Braun, A., You, J., Slaughter, C., Pickart, C., and Chen, Z.J. (2000). Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitinconjugating enzyme complex and a unique polyubiquitin chain. Cell 103, 351-361.
  23. Drost, J., Mantovani, F., Tocco, F., Elkon, R., Comel, A., Holstege, H., Kerkhoven, R., Jonkers, J., Voorhoeve, P.M., Agami, R., et al. (2010). BRD7 is a candidate tumour suppressor gene required for p53 function. Nat. Cell Biol. 12, 380-389.
  24. Dubois, E., Bercy, J., and Messenguy, F. (1987). Characterization of two genes, ARGRI and ARGRIII required for specific regulation of arginine metabolism in yeast. Mol. Gen. Genet. 207, 142-148.
  25. Frederick, J.P., Mattiske, D., Wofford, J.A., Megosh, L.C., Drake, L.Y., Chiou, S.-T., Hogan, B.L.M., and York, J.D. (2005). An essential role for an inositol polyphosphate multikinase, Ipk2, in mouse embryogenesis and second messenger production. Proc. Natl. Acad. Sci. USA 102, 8454-8459.
  26. Gao, Y., and Wang, H. (2007). Inositol pentakisphosphate mediates Wnt/beta-catenin signaling. J. Biol. Chem. 282, 26490-26502.
  27. Hatch, A.J., Odom, A.R., and York, J.D. (2017). Inositol phosphate multikinase dependent transcriptional control. Adv. Biol. Regul. 64, 9-19.
  28. Hawley, S.A., Davison, M., Woods, A., Davies, S.P., Beri, R.K., Carling, D., and Hardie, D.G. (1996). Characterization of the AMP-activated protein kinase kinase from rat liver and identification of threonine 172 as the major site at which it phosphorylates AMP-activated protein kinase. J. Biol. Chem. 271, 27879-27887.
  29. Hill, C.S., and Treisman, R. (1995). Transcriptional regulation by extracellular signals: mechanisms and specificity. Cell 80, 199-211.
  30. Hjerpe, R., and Rodriguez, M. (2008). Alternative UPS drug targets upstream the 26S proteasome. Int. J. Biochem. Cell Biol. 40, 1126-1140.
  31. Holub, B.J. (1986). Metabolism and function of myo-inositol and inositol phospholipids. Annu. Rev. Nutr. 6, 563-597.
  32. Hope, B., Kosofsky, B., Hyman, S.E., and Nestler, E.J. (1992). Regulation of immediate early gene expression and AP-1 binding in the rat nucleus accumbens by chronic cocaine. Proc. Natl. Acad. Sci. USA 89, 5764-5768.
  33. Hunt, S.P., Pini, A., and Evan, G. (1987). Induction of c-fos-like protein in spinal cord neurons following sensory stimulation. Nature 328, 632-634.
  34. Jackson, S.G., Al-Saigh, S., Schultz, C., and Junop, M.S. (2011). Inositol pentakisphosphate isomers bind PH domains with varying specificity and inhibit phosphoinositide interactions. BMC Struct. Biol. 11, 11.
  35. Kandel, E.R. (2001). The molecular biology of memory storage: a dialogue between genes and synapses. Science 294, 1030-1038.
  36. Kim, S., and Snyder, S.H. (2011). Nutrient amino acids signal to mTOR via inositol polyphosphate multikinase. Cell Cycle 10, 1708-1710.
  37. Kim, S., Kim, S.F., Maag, D., Maxwell, M.J., Resnick, A.C., Juluri, K.R., Chakraborty, A., Koldobskiy, M.A., Cha, S.H., Barrow, R., et al. (2011). Amino acid signaling to mTOR mediated by inositol polyphosphate multikinase. Cell Metab. 13, 215-221.
  38. Kim, E., Tyagi, R., Lee, J.-Y., Park, J., Kim, Y.-R., Beon, J., Chen, P.Y., Cha, J.Y., Snyder, S.H., and Kim, S. (2013). Inositol polyphosphate multikinase is a coactivator for serum response factor-dependent induction of immediate early genes. Proc. Natl. Acad. Sci. USA 110, 19938-19943.
  39. Kim, E., Beon, J., Lee, S., Park, J., and Kim, S. (2016). IPMK: A versatile regulator of nuclear signaling events. Adv. Biol. Regul. 61, 25-32.
  40. Kim, E., Beon, J., Lee, S., Park, S.J., Ahn, H., Kim, M.G., Park, J.E., Kim, W., Yuk, J.-M., Kang, S.-J., et al. (2017). Inositol polyphosphate multikinase promotes Toll-like receptor-induced inflammation by stabilizing TRAF6. Sci. Adv. 3, e1602296.
  41. Kondo, T., Kawai, T., and Akira, S. (2012). Dissecting negative regulation of Toll-like receptor signaling. Trends Immunol. 33, 449-458.
  42. Lamothe, B., Besse, A., Campos, A.D., Webster, W.K., Wu, H., and Darnay, B.G. (2007). Site-specific Lys-63-linked tumor necrosis factor receptor-associated factor 6 auto-ubiquitination is a critical determinant of I${\kappa}$B kinase activation. J. Biol. Chem. 282, 4102-4112.
  43. Lee, M.S., and Kim, Y.-J. (2007). Pattern-recognition receptor signaling initiated from extracellular, membrane, and cytoplasmic space. Mol. Cells 23, 1-10.
  44. Lee, J.-Y., Kim, Y., Park, J., and Kim, S. (2012). Inositol polyphosphate multikinase signaling in the regulation of metabolism. Ann. N. Y. Acad. Sci. 1271, 68-74.
  45. Lee, T.-S., Lee, J.-Y., Kyung, J.W., Yang, Y., Park, S.J., Lee, S., Pavlovic, I., Kong, B., Jho, Y.S., Jessen, H.J., et al. (2016). Inositol pyrophosphates inhibit synaptotagmin-dependent exocytosis. Proc. Natl. Acad. Sci. USA 113, 8314-8319.
  46. Liew, F.Y., Xu, D., Brint, E.K., and O'Neill, L.A.J. (2005). Negative regulation of Toll-like receptor-mediated immune responses. Nat. Rev. Immunol. 5, 446-458.
  47. Liu, P., Qi, X., Bian, C.E., Yang, F.A.N., and Lin, X. (2017). MicroRNA-18a inhibits ovarian cancer growth via directly targeting TRIAP1 and IPMK. Oncol. Lett. 1-8.
  48. Maag, D., Maxwell, M.J., Hardesty, D.A., Boucher, K.L., Choudhari, N., Hanno, A.G., Ma, J.F., Snowman, A.S., Pietropaoli, J.W., Xu, R., et al. (2011). Inositol polyphosphate multikinase is a physiologic PI3-kinase that activates Akt/PKB. Proc. Natl. Acad. Sci. USA 108, 1391-1396.
  49. Malabanan, M.M., and Blind, R.D. (2016). Inositol polyphosphate multikinase (IPMK) in transcriptional regulation and nuclear inositide metabolism. Biochem. Soc. Trans. 44, 279-285.
  50. Matynia, A., Kushner, S.A., and Silva, A.J. (2002). Genetic approaches to molecular and cellular cognition: a focus on LTP and learning and memory. Annu. Rev. Genet. 36, 687-720.
  51. Messenguy, F., and Dubois, E. (1993). Genetic evidence for a role for MCM1 in the regulation of arginine metabolism in Saccharomyces cerevisiae. Mol. Cell. Biol. 13, 2586-2592.
  52. Millard, C.J., Watson, P.J., Celardo, I., Gordiyenko, Y., Cowley, S.M., Robinson, C.V, Fairall, L., and Schwabe, J.W.R. (2013). Class I HDACs share a common mechanism of regulation by inositol phosphates. Mol. Cell 51, 57-67.
  53. Odom, A.R., Stahlberg, A., Wente, S.R., and York, J.D. (2000). A role for nuclear inositol 1,4,5-trisphosphate kinase in transcriptional control. Science 287, 2026-2029.
  54. Parker, K.L., and Schimmer, B.P. (1997). Steroidogenic factor 1: a key determinant of endocrine development and function. Endocr. Rev. 18, 361-377.
  55. Piccolo, E., Vignati, S., Maffucci, T., Innominato, P.F., Riley, A.M., Potter, B.V.L., Pandolfi, P.P., Broggini, M., Iacobelli, S., Innocenti, P., et al. (2004). Inositol pentakisphosphate promotes apoptosis through the PI 3-K/Akt pathway. Oncogene 23, 1754-1765.
  56. Pickart, C.M. (1997). Targeting of substrates to the 26S proteasome. FASEB J. 11, 1055-1066.
  57. Ramazzotti, G., Maria Billi, A., Manzoli, L., Mazzetti, C., Ruggeri, A., Erneux, C., Kim, S., Suh, P.-G., Cocco, L., and Faenza, I. (2016). IPMK and ${\beta}$-catenin mediate PLC-${\beta}$1-dependent signaling in myogenic differentiation. Oncotarget 7, 84118-84127.
  58. Ramazzotti, G., Faenza, I., Fiume, R., Billi, A.M., Manzoli, L., Mongiorgi, S., Ratti, S., McCubrey, J.A., Suh, P.-G., Cocco, L., et al. (2017). PLC-beta1 and cell differentiation: An insight into myogenesis and osteogenesis. Adv. Biol. Regul. 63, 1-5.
  59. Razzini, G., Berrie, C.P., Vignati, S., Broggini, M., Mascetta, G., Brancaccio, A., and Falasca, M. (2000). Novel functional PI 3-kinase antagonists inhibit cell growth and tumorigenicity in human cancer cell lines. FASEB J. 14, 1179-1187.
  60. Resnick, A.C., Snowman, A.M., Kang, B.N., Hurt, K.J., Snyder, S.H., and Saiardi, A. (2005). Inositol polyphosphate multikinase is a nuclear PI3-kinase with transcriptional regulatory activity. Proc. Natl. Acad. Sci. USA 102, 12783-12788.
  61. Saiardi, A., Erdjument-Bromage, H., Snowman, A.M., Tempst, P., and Snyder, S.H. (1999). Synthesis of diphosphoinositol pentakisphosphate by a newly identified family of higher inositol polyphosphate kinases. Curr. Biol. 9, 1323-1326.
  62. Sancak, Y., Bar-Peled, L., Zoncu, R., Markhard, A.L., Nada, S., and Sabatini, D.M. (2010). Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141, 290-303.
  63. De Santa Barbara, P., Bonneaud, N., Boizet, B., Desclozeaux, M., Moniot, B., Sudbeck, P., Scherer, G., Poulat, F., and Berta, P. (1998). Direct interaction of SRY-related protein SOX9 and steroidogenic factor 1 regulates transcription of the human anti-Müllerian hormone gene. Mol. Cell. Biol. 18, 6653-6665.
  64. Scott, J.W., Hawley, S.A., Green, K.A., Anis, M., Stewart, G., Scullion, G.A., Norman, D.G., and Hardie, D.G. (2004). CBS domains form energy-sensing modules whose binding of adenosine ligands is disrupted by disease mutations. J. Clin. Invest. 113, 274-284.
  65. Sei, Y., Zhao, X., Forbes, J., Szymczak, S., Li, Q., Trivedi, A., Voellinger, M., Joy, G., Feng, J., Whatley, M., et al. (2015). A hereditary form of small intestinal carcinoid associated with a germline mutation in inositol polyphosphate multikinase. Gastroenterology 149, 67-78.
  66. Shen, X., Xiao, H., Ranallo, R., Wu, W.-H., and Wu, C. (2003). Modulation of ATP-dependent chromatin-remodeling complexes by inositol polyphosphates. Science 299, 112-114.
  67. Silva, A.J., Kogan, J.H., Frankland, P.W., and Kida, S. (1998). CREB and memory. Annu. Rev. Neurosci. 21, 127-148.
  68. Steger, D.J., Haswell, E.S., Miller, A.L., Wente, S.R., and O'Shea, E.K. (2003). Regulation of chromatin remodeling by inositol polyphosphates. Science 299, 114-116.
  69. Streb, H., Irvine, R.F., Berridge, M.J., and Schulz, I. (1983). Release of $Ca^{2+}$ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate. Nature 306, 67-69.
  70. Vousden, K.H., and Prives, C. (2009). Blinded by the light: the growing complexity of p53. Cell 137, 413-431.
  71. Wang, Y., and Wang, H.Y. (2012). Dvl3 translocates IPMK to the cell membrane in response to Wnt. Cell. Signal. 24, 2389-2395.
  72. Watson, P., Fairall, L., Santos, G., and Schwabe, J. (2012). Structure of HDAC3 bound to co-repressor and inositol tetraphosphate. Nature 481, 335-340.
  73. Watson, P.J., Millard, C.J., Riley, A.M., Robertson, N.S., Wright, L.C., Godage, H.Y., Cowley, S.M., Jamieson, A.G., Potter, B.V.L., and Schwabe, J.W.R. (2016). Insights into the activation mechanism of class I HDAC complexes by inositol phosphates. Nat. Commun. 7, 11262.
  74. Wickramasinghe, V., Savill, J., Chavali, S., Jonsdottir, A., Rajendra, E., Grüner, T., Laskey, R., Babu, M.M., and Venkitaraman, A. (2013). Human inositol polyphosphate multikinase regulates transcriptselective nuclear mRNA export to preserve genome integrity. Mol. Cell 51, 737-750.
  75. Xiao, B., Sanders, M.J., Underwood, E., Heath, R., Mayer, F. V, Carmena, D., Jing, C., Walker, P.A., Eccleston, J.F., Haire, L.F., et al. (2011). Structure of mammalian AMPK and its regulation by ADP. Nature 472, 230-233.
  76. Xu, R., and Snyder, S.H. (2013). Gene transcription by p53 requires inositol polyphosphate multikinase as a co-activator. Cell Cycle 12, 1819-1820.
  77. Xu, R., Paul, B.D., Smith, D.R., Tyagi, R., Rao, F., Khan, A.B., Blech, D.J., Vandiver, M.S., Harraz, M.M., Guha, P., et al. (2013a). Inositol polyphosphate multikinase is a transcriptional coactivator required for immediate early gene induction. Proc. Natl. Acad. Sci. USA 110, 16181-16186.
  78. Xu, R., Sen, N., Paul, B.D., Snowman, A.M., Rao, F., Vandiver, M.S., Xu, J., and Snyder, S.H. (2013b). Inositol polyphosphate multikinase is a coactivator of p53-mediated transcription and cell death. Sci. Signal. 6, 1-17.
  79. Yin, J.C., Wallach, J.S., Del Vecchio, M., Wilder, E.L., Zhou, H., Quinn, W.G., and Tully, T. (1994). Induction of a dominant negative CREB transgene specifically blocks long-term memory in Drosophila. Cell 79, 49-58.
  80. Yokoyama, J.S., Wang, Y., Schork, A.J., Thompson, W.K., Karch, C.M., Cruchaga, C., McEvoy, L.K., Witoelar, A., Chen, C.-H., Holland, D., et al. (2016). Association between genetic traits for immunemediated diseases and alzheimer disease. JAMA Neurol. 73, 691-697.
  81. Zoncu, R., Efeyan, A., and Sabatini, D.M. (2011). mTOR: from growth signal integration to cancer, diabetes and ageing. Nat. Rev. Mol. Cell Biol. 12, 21-35.

Cited by

  1. Genome-wide interaction studies identify sex-specific risk alleles for nonsyndromic orofacial clefts vol.42, pp.7, 2018,