DOI QR코드

DOI QR Code

Collaborative optimization for ring-stiffened composite pressure hull of underwater vehicle based on lamination parameters

  • Li, Bin (Science and Technology on Underwater Vehicle Laboratory, Harbin Engineering University) ;
  • Pang, Yong-jie (Science and Technology on Underwater Vehicle Laboratory, Harbin Engineering University) ;
  • Cheng, Yan-xue (Science and Technology on Underwater Vehicle Laboratory, Harbin Engineering University) ;
  • Zhu, Xiao-meng (College of Shipbuilding Engineering, Harbin Engineering University)
  • Received : 2016.06.20
  • Accepted : 2016.09.25
  • Published : 2017.07.31

Abstract

A Collaborative Optimization (CO) methodology for ring-stiffened composite material pressure hull of underwater vehicle is proposed. Structural stability and material strength are both examined. Lamination parameters of laminated plates are introduced to improve the optimization efficiency. Approximation models are established based on the Ellipsoidal Basis Function (EBF) neural network to replace the finite element analysis in layout optimizers. On the basis of a two-level optimization, the simultaneous structure material collaborative optimization for the pressure vessel is implemented. The optimal configuration of metal liner and frames and composite material is obtained with the comprehensive consideration of structure and material performances. The weight of the composite pressure hull decreases by 30.3% after optimization and the validation is carried out. Collaborative optimization based on the lamination parameters can optimize the composite pressure hull effectively, as well as provide a solution for low efficiency and non-convergence of direct optimization with design variables.

Acknowledgement

Supported by : National Natural Science Foundation of China

References

  1. Abdalla, M.M., Setoodeh, S., Gurdal, Z., 2007. Design of variable stiffness composite panels for maximum fundamental frequency using lamination parameters. Compos Struct. 81, 283-291. https://doi.org/10.1016/j.compstruct.2006.08.018
  2. Alexandrov, N.M., Lewis, R.M., 2002. Analytical computational aspects of collaborative optimization for multidisciplinary design. AIAA J. 40 (2), 301-309. https://doi.org/10.2514/2.1646
  3. Belegundu, A.D., Halberg, E., Yukish, M.A., Simpson, T.W., 2000. Attribute-based multidisciplinary optimization of undersea vehicles. In: 8th Symposium Multidisc Anal Optim.
  4. Braun, R.D., Moore, A.A., Kroo, I.M., 1997. Collaborative architecture for launch vehicle design. J. Spacecr. Rocket 34 (4), 478-486. https://doi.org/10.2514/2.3237
  5. Chen, M., Xie, K., Jia, W., Xu, K., 2015. Free and forced vibration of ring-stiffened conical-cylindrical shells with arbitrary boundary conditions. Ocean. Eng. 108, 241-256. https://doi.org/10.1016/j.oceaneng.2015.07.065
  6. Durand, L.P., 2008. Composite Materials Research Progress. Nova Science Publishers, New York.
  7. Fathallah, E., Qi, H., Tong, L., Helal, M., 2014. Design optimization of composite elliptical deep-submersible pressure hull for minimizing the buoyancy factor. Adv. Mech. Eng. 2014, 987903 http://dx.doi.org/10.1155/2014/987903. https://doi.org/10.1155/2014/987903
  8. Fathallah, E., Qi, H.,Tong, L., Helal, M., 2015. Design optimization of lay-up and compositematerialsystemtoachieveminimumbuoyancyfactorforcomposite ellipticalsubmersiblepressurehull.ComposStruct.121,16-26.
  9. Foldager, J., Hansen, J.S., Olhoff, N., 1998. A general approach forcing convexity of ply angle optimization in composite laminates. Struct. Optim. 16, 201-211. https://doi.org/10.1007/BF01202831
  10. Fu, S., Huang, H., Lin, Z., 2012. Collaborative optimization of container ship on static and dynamic responses. Procedia Eng. 31, 613-621. https://doi.org/10.1016/j.proeng.2012.01.1075
  11. Gu, X., Renaud, J.E., 2001. Implicit uncertainty propagation for robust collaborative optimization. In: 27th ASME Design Automation Conference. DAC-21118, pp. 9-12.
  12. Gurdal, Z., Haftka, R.T., Hajela, P., 1999. Laminated Composite Materials. John Wiley & Sons, USA.
  13. Haftka, R.T., Gurdal, Z., 1992. Elements of Structural Optimization. Springer, Kluwer.
  14. Herencia, J.E., Weaver, P.M., Friswell, M.I., 2008. Optimization of anisotropic composite panels with T-shaped stiffeners including transverse shear effects and out-of-plane loading. Struct. Multidiscip. Optim. 37, 165-184. https://doi.org/10.1007/s00158-008-0227-6
  15. Jones, R.M., 1999. Mechanics of Composite Materials. Taylor & Francis, London.
  16. Kim, Y.h., Jo, Y.D., Bae, S.Y., Sin, S.J., 2010. Material design of Al/CFRP hybrid composites for the hull of autonomous underwater vehicle. In: OCEANS IEEE Syd., OCEANSSYD.
  17. Kroo, I.M., Altus, S., Braun, R.D., Gage, P., Sobieski, I., 1994. Multidisciplinary optimization methods for aircraft preliminary design. In: 5th Symposium Multidisc Anal Optim, pp. 697-707.
  18. Le, R.R., Haftka, R.T., 1993. Optimization of laminated stacking sequence for buckling load maximization by genetic algorithms. AIAA J. 31 (5), 951-956. https://doi.org/10.2514/3.11710
  19. Lee, G.C., Kweon, J.H., Choi, J.H., 2013. Optimization of composite sandwich cylinders for underwater vehicle application. Compos Struct. 96, 691-697. https://doi.org/10.1016/j.compstruct.2012.08.055
  20. Li, M., Azarm, S., 2008. Multiobjective collaborative robust optimization with interval uncertainty and interdisciplinary uncertainty propagation. J. Mech. Des. 130 (8), 1-11.
  21. Luo, W., Lyu, W., 2015. An application of multidisciplinary design optimization to the hydrodynamic performances of underwater robots. Ocean. Eng. 104, 686-697. https://doi.org/10.1016/j.oceaneng.2015.06.011
  22. Martins, J.R.R.A., Lambe, A.B., 2013. Multidisciplinary design optimization: a survey of architectures. AIAA J. 51 (9), 2049-2075. https://doi.org/10.2514/1.J051895
  23. Miki, M., Sugiyama, Y., 1991. Optimum design of laminated composite plates using lamination parameters. AIAA J. 32 (1), 275-283.
  24. Pedersen, P., 2004. Examples of density, orientation, and shape-optimal 2D-design for stiffness and/or strength with orthotropic materials. Struct. Multidiscip. Optim. 26, 37-49. https://doi.org/10.1007/s00158-003-0295-6
  25. Setoodeh, S., Abdalla, M.M., Gurdal, Z., 2005. Combined topology and fiber path design of composite layers using cellular automata. Struct. Multidiscip. Optim. 30, 413-421. https://doi.org/10.1007/s00158-005-0528-y
  26. Setoodeh, S., Abdalla, M.M., Gurdal, Z., 2006. Design of variable - stiffness laminates using laminate on parameters. Compos Pt B-Eng 37, 301-309. https://doi.org/10.1016/j.compositesb.2005.12.001
  27. Sobieski, I., Kroo, I.M., 1996. Aircraft design using collaborative optimization. In: 34th AIAA Aerospace Science Meeting, pp. 15-18. AIAA Paper 96-0715.
  28. Sobieski, I.P., Kroo, I.M., 2000. Collaborative optimization using response surface estimation. AIAA J. 38 (10), 1931-1938. https://doi.org/10.2514/2.847
  29. Thuwis, G.A.A., Breuker, R.D., Abdalla, M.M., Gurdal, Z., 2010. Aeroelastic tailoring using lamination parameters. Struct. Multidiscip. Optim. 41, 637-646. https://doi.org/10.1007/s00158-009-0437-6
  30. Topal, U., Uzman, U., 2008. Thermal buckling load optimization of laminated composite plates. Thin-Walled Struct. 46, 667-675. https://doi.org/10.1016/j.tws.2007.11.005
  31. Vasiliev, V.V., Morozov, E.V., 2007. Advanced Mechanics of Composite Materials. Elsevier Science, Oxford.
  32. Vikrant, A., Shapour, A., 2006. A genetic algorithms based approach for multidisciplinary multiobjective collaborative optimization. In: 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. The AIAA, 2006, pp. 630-646.
  33. Yoo, S.Y., Jun, B.H., Shim, H.G., Lee, P.M., 2015. Design and analysis of carbon fiber reinforced plastic body frame for multi-legged subsea walking robot. Crabster. Ocean. Eng. 102, 78-86. https://doi.org/10.1016/j.oceaneng.2015.04.024