Static and free vibration behaviour of orthotropic elliptic paraboloid shells

  • Darilmaz, Kutlu (Department of Civil Engineering, Istanbul Technical University)
  • Received : 2016.08.06
  • Accepted : 2017.01.02
  • Published : 2017.04.30


In this paper the influence of aspect ratio, height ratio and material angle on static and free vibration behaviour of orthotropic elliptic paraboloid shells is studied by using a four-node hybrid stress finite element. The formulation of the element is based on Hellinger-Reissner variational principle. The element is developed by combining a hybrid plane stress element and a hybrid plate element. A parametric study is carried out for static and free vibration response of orthotropic elliptic paraboloid shells with respect to displacements, internal forces, fundamental frequencies and mode shapes by varying the aspect and height ratios, and material angle.


elliptic paraboloid shell;assumed stress hybrid element;finite element;static analysis;free vibration


  1. Aass, A. (1963), "A contribution to the bending theory of elliptic paraboloid shells", IABSE, 23, p. 1.
  2. Allman, D.J. (1984), "A compatible triangular element including vertex rotations for plane elasticity problems", Comp. Struct., 19(1-2), 1-8.
  3. Bergan, P.G. and Felippa, C.A. (1985), "A triangular membrane element with rotational degrees of freedom", Comp. Methods Appl. Mech. Eng., 50(1), 25-69.
  4. Bochkarev, S.A., Lekomtsev, S.V. and Matveenko, V.P. (2015), "Natural vibrations of loaded noncircular cylindrical shells containing a quiescent fluid", Thin-Wall. Struct., 90, 12-22.
  5. Choi, C.K. and Lee, W.H. (1996), "Versatile variable-node flatshell element", J. Eng. Mech., 122(5), 432-441.
  6. Chun, K.S., Kassegne, S.K. and Wondimu, B.K. (2009), "Hybrid/mixed assumed stress element for anisotropic laminated elliptical and parabolic shells", Finite Elem. Anal. Des., 45(11), 766-781.
  7. Cook, R.D. (1986), "On the Allman triangle and a related quadrilateral element", Comp. Struct., 22(6), 1065-1067.
  8. Ganapathi, M. and Haboussi, M. (2003), "Free vibrations of thick laminated anisotropic non-circular cylindrical shells", Compos. Struct., 60(2), 125-133.
  9. Darilmaz, K. (2005), "An assumed-stress finite element for static and free vibration analysis of Reissner-Mindlin plates", Struct. Eng. Mech., Int. J., 19(2), 199-215.
  10. Darilmaz, K. (2007), "An assumed-stress hybrid element for static and free vibration analysis of folded plates", Struct. Eng. Mech., Int. J., 25(4), 405-421.
  11. Darilmaz, K. (2012), "Stiffened orthotropic corner supported hypar shells: Effect of stiffener location, rise/span ratio and fiber orientaton on vibration behavior", Steel Compos. Struct., Int. J., 12(4), 275-289.
  12. Darilmaz, K. and Kumbasar, N. (2006), "An 8-node assumed stress hybrid element for analysis of shells", Comp. Struct., 84(29), 1990-2000.
  13. Feng, W., Hoa, S.V. and Huang, Q. (1997), "Classification of stress modes in assumed stress fields of hybrid finite elements", Int. J. Num. Meth. Eng., 40(23), 4313-4339.<4313::AID-NME259>3.0.CO;2-N
  14. Ganapathi, M., Patel, B.P. and Patel, H.G. (2004), "Free flexural vibration behavior of laminated angle-ply elliptical cylindrical shells", Comp. Struct., 82(6), 509-518.
  15. Ibrahimbegovic, A., Taylor, R.L. and Wilson, E.L. (1990), "A robust quadrilateral membrane finite element with drilling degrees of freedom", Int. J. Numer. Methods Eng., 30(3), 445-457.
  16. Kang, J.H. (2015), "Vibration analysis of free-fixed hyperbolic cooling toer shells", Struct. Eng. Mech., Int. J., 55(4), 785-799.
  17. Kazemi, E., Darvizeh, M., Darvizeh, A. and Ansari, R. (2012), "An investigation of the buckling behavior of composite elliptical cylindrical shells with piezoelectric layers under axial compression", Acta Mech., 223(10), 2225-2242.
  18. Lo, H.C. and Hyer, M.W. (2012), "Fundamental natural frequencies of thin-walled elliptical composite cylinders", J. Compos. Mater., 46(10), 1169-1190.
  19. MacNeal, R.H. and Harder, R.L. (1988), "A refined four-noded membrane element with rotational degrees of freedom", Compos. Struct., 28(1), 75-84.
  20. Mohraz, B. and Schnobrich, W.C. (1966), "The analysis of shallow shell structures by a discrete element system", Civil Engineering Studies, Structural Research Series No. 304.
  21. Patel, B.P., Gupta, S.S., Loknath, M.S. and Kadu, C.P. (2005), "Free vibration analysis of functionally graded elliptical cylindrical shells using higher-order theory", Compos. Struct., 69(3), 259-270.
  22. Pian, T.H.H. (1964), "Derivation of element stiffness matrices by assumed stress distributions", AIAA J., 2(7), 1333-1336.
  23. Pian, T.H.H. and Chen, D.P. (1983), "On the suppression of zero energy deformation modes", Int. J. Num. Meth. Eng., 19(12), 1741-1752.
  24. Punch, E.F. and Atluri, S.N. (1984), "Development and testing of stable, isoparametric curvilinear 2 and 3-D hybrid stress elements", Comput. Meth. Appl. Mech. Eng., 47, 331-356.
  25. Sambandam, C.T., Patel, B.P., Gupta, S.S., Munot, C.S. and Ganapathi, M. (2003), "Buckling characteristics of cross-ply elliptical cylinders under axial compression", Compos. Struct., 62(1), 7-17.
  26. Suzuki, K., Shikanai, G. and Leissa, A.W. (1996), "Free vibrations of laminated composite non-circular thick cylindrical shells", Int. J. Solids Struct., 33(27), 4079-4100.
  27. Yunus, S.M., Saigal, S. and Cook, R.D. (1989), "On improved hybrid finite elements with rotational degrees of freedom", Int. J. Numer. Meth. Eng., 28(4), 785-800.
  28. Zhang, J.F., Chen, H., Ge, Y.J., Zhao, L. and Ke, S.T. (2014), "Effects of stiffening rings on the dynamic properties of hyperboloidal cooling towers", Struct. Eng. Mech., Int. J., 49(5), 619-629.