DOI QR코드

DOI QR Code

Chemical Compositions of Primary PM2.5 Derived from Biomass Burning Emissions

  • Received : 2016.11.09
  • Accepted : 2017.02.14
  • Published : 2017.06.30

Abstract

A number of field studies have provided evidence that biomass burning is one of the major global sources of atmospheric particles. In this study, we have collected $PM_{2.5}$ emitted from biomass burning combusted at open burning and laboratory chamber situations. The open burning experiment was conducted with the cooperation of 9 farmers in Chiba Prefecture, Japan, while the chamber experiment was designed to evaluate the characteristics of chemical components among 14 different plant species. The analyzed categories were $PM_{2.5}$ mass concentration, organic carbon (OC), elemental carbon (EC), ionic components ($Na^+$, ${NH_4}^+$, $Ca^{2+}$, $Mg^{2+}$, $K^+$, $Cl^-$, ${NO_3}^-$ and ${SO_4}^{2-}$), water-soluble organic carbon (WSOC), water-insoluble inorganic carbon (WIOC), char-EC and soot-EC. OC was the dominant chemical component, accounting for the major fraction of primary $PM_{2.5}$ derived from biomass burning, followed by EC. Ionic components contributed a small portion of $PM_{2.5}$, as well as that of $K^+$. In some cases, $K^+$ is used as biomass burning tracer; however, the observations obtained in this study suggest that $K^+$ may not always be suitable as a tracer for biomass burning emissions. Also, the results of all the samples tested indicate relatively low values of char-EC compared to soot-EC. From our results, careful consideration should be given to the usage of $K^+$ and char-EC as indicators of biomass burning. The calculated ratios of WSOC/OC and WIOC/OC were 55.7% and 44.3% on average for all samples, which showed no large difference between them. The organic materials to OC ratio, which is often used for chemical mass closure model, was roughly estimated by two independent methods, resulting in a factor of 1.7 for biomass burning emissions.

References

  1. Abas, M.R., Oros, D.R., Simoneit, B.R.T. (2004) Biomass burning as the main source of organic aerosol particulate matter in Malaysia during haze episodes. Chemosphere 55, 1089-1095. https://doi.org/10.1016/j.chemosphere.2004.02.002
  2. Aiken, A.C., Decarlo, P.F., Kroll, J.H., Worsnop, D.R., Huffman, J.A., Docherty, K.S., Ulbrich, I.M., Mohr, C., Kimmel., J.R., Super, D., Sun, Y., Zhang, Q., Trimborn, A., Northway, M., Ziemann, P.J., Canagaratna, M.R., Onasch, T.B., Alfarra, M.R., Prevot, A.S.H., Dommen, J., Duplissy, J., Metzger, A., Baltensperger, U., Jimenez, J.L. (2008) O/C and OM/OC ratios of primary, secondary, and ambient organic aerosols with high-resolution-time-of-flight aerosol mass spectrometry. Environmental Science and Technology 42, 4478-4485. https://doi.org/10.1021/es703009q
  3. Alves, N.O., Brito, J., Caumo, S., Arana, A., Hacon, S.S., Artaxo, P., Hillamo, R., Teinila Medeiros, S.R.B., Vasconcellos, P.C. (2015) Biomass burning in the Amazon region: Aerosol source apportionment and associated health risk assessment. Atmospheric Environment 120, 277-285. https://doi.org/10.1016/j.atmosenv.2015.08.059
  4. Andreae, M.O., Merlet, P. (2001) Emission of trace gases and aerosols from biomass burning. Global Biogeochemical Cycles 15, 955-966. https://doi.org/10.1029/2000GB001382
  5. Chow, J.C., Watson, J.G., Pritchett, L.C., Pierson, W.R., Frazier, C.A., Purcell, R.G. (1993) The DRI thermal/ optical reflectance carbon analysis system: description, evaluation and applications in U.S. air quality studies. Atmospheric Environment 27, 1185-1201. https://doi.org/10.1016/0960-1686(93)90245-T
  6. Chow, J.C., Watson, J.G., Crow, D., Lowenthal, D.H., Merrifield, T.Y.A. (2001) Comparison of IMPROVE and NIOSH carbon measurements. Aerosol Science and Technology 34, 23-34. https://doi.org/10.1080/02786820119073
  7. Chow, J.C., Watson, J.G., Kuhns, H., Etyemezian, V., Lowenthal, D.H., Crow, D., Kohl, S.D., Engelbrecht, J.P., Green, M.K. (2004) Source profiles for industrial, mobile and area sources in the big bend regional aerosol visibility and observational (BRAVO) study. Chemosphere 54, 185-208. https://doi.org/10.1016/j.chemosphere.2003.07.004
  8. Chuang, M.T., Chou, C.C.K., Sopajaree, K., Lin, N.H., Wang, J.L., Sheu, G.R., Chang, Y.J., Lee, C.T. (2013) Characterization of aerosol chemical properties from near-source biomass burning in the northern Indochina during 7-SEAS/Dongsha experiment. Atmospheric Environment 78, 72-81. https://doi.org/10.1016/j.atmosenv.2012.06.056
  9. Echalar, F., Gaudichet, A. (1995) Aerosol emissions by tropical forest and savanna biomass burning: characteristic trace elements and fluxes. Geophysical Research Letters 22, 3039-3042. https://doi.org/10.1029/95GL03170
  10. Favez, O., Cachier, H., Sciare, J., Sarda-Esteve, Martinon, L. (2009) Evidence for a significant contribution of wood burning aerosols to $PM_{2.5}$ during the winter season in Paris, France. Atmospheric Environment 43, 3640-3644. https://doi.org/10.1016/j.atmosenv.2009.04.035
  11. Fine, P.M., Cass, G.R., Simoneit, B.R.T. (2001) Chemical characterization of fine particle emissions from fireplace combustion of woods grown in the Northeast United States. Environmental Science & Technology 35, 2665-2675. https://doi.org/10.1021/es001466k
  12. Fine, P.M., Cass, G.R., Simoneit, B.R.T. (2002) Chemical characterization of fine particle emissions from the fireplace combustion of woods grown in the Southern United States. Environmental Science & Technology 36, 1442-1451. https://doi.org/10.1021/es0108988
  13. Fujii, Y., Kawamoto, H., Tohno, S., Oda, M., Iriana, W., Lestari, P. (2015) Characteristics of carbonaceous aerosols emitted from peatland fire in Riau, Sumatra, Indonesia (2): Identification of organic compounds. Atmospheric Environment 110, 1-7. https://doi.org/10.1016/j.atmosenv.2015.03.042
  14. Gelencser, A., May, B., Simpson, D., Sanchez-Ochoa, A., Kasper-Giebl, A., Puxbaum, H., Caseiro, A., Pio, C., Legrand, M. (2007) Source apportionment of $PM_{2.5}$ organic aerosol over Europe: Primary/secondary, natural/anthropogenic, and fossil/biogenic origin. Journal of Geophysical Research 112, D23S04.
  15. Hagino, H., Kotaki, M., Sakamoto, K. (2006) Levoglucosan and carbonaceous components for fine particles in early winter at Saitama. Earozoru Kenkyu 21, 38-44 (in Japanese with English abstract).
  16. Han, Y.M., Cao, J.J., Chow, J.C., Watson, J.G., Fung, K., Jin, Z.D., Liu, S.X., An, Z.S. (2007) Evaluation of the thermal/optical reflectance method for discrimination between soot- and char-EC. Chemosphere 69, 569-574. https://doi.org/10.1016/j.chemosphere.2007.03.024
  17. Han, Y.M., Lee, S.C., Cao., J.J., Ho, K.F., An, Z.S. (2009) Spatial distribution and seasonal variation of char-EC and soot-EC in the atmosphere over China. Atmospheric Environment 43, 6066-6073. https://doi.org/10.1016/j.atmosenv.2009.08.018
  18. Han, Y.M., Cao, J.J., Lee, S.C., Ho, K.F., An, Z.S. (2010) Different characteristics of char and soot in the atmosphere and their ratio as an indicator for source identification in Xi'an, China. Atmospheric Chemistry Physics 10, 595-607. https://doi.org/10.5194/acp-10-595-2010
  19. Hasegawa, S., Yonemochi, S., Yamada, D., Suzuki, Y., Ishii, K., Saito, S., Kamoshida, M., Kumagai, K., Jo, H. (2014) Analysis of the high concentration of $PM_{2.5}$ observed in the Kanto area in November 2011. Journal of Japan Society for Atmospheric Environment 49, 242-251 (in Japanese with English abstract).
  20. Hays, M.D., Fine, P.M., Geron, C.D., Kleeman, M.J., Gullet, B.K. (2005) Open burning of agricultural biomass: Physical and chemical properties of particlephase emissions. Atmospheric Environment 39, 6747-6764. https://doi.org/10.1016/j.atmosenv.2005.07.072
  21. Hennigan, C.J., Westervelt, D.M., Riipinen, I., Engelhart, G.J., Lee, T., Collett Jr., J.L., Pandis, S.N., Adams, P.J., Robinson, A.L. (2012) New particle formation and growth in biomass burning plumes: An important source of cloud condensation nuclei. Geophysical Research Letters 39, L09805.
  22. Huang, R.J., Zhang, Y., Bozzetti, C., Ho, K.F., Cao, J.J., Han, Y., Daellenbach, K.R., Slowik, J.G., Platt, S.M., Canonaco, F., Zotter, P., Wolf, R. Pieber, S.M., Bruns, E.A., Crippa, M., Ciarelli, G., Piazzalunga, A., Schwikowski, M., Abbaszade, G., Schnelle-Kreis, J., Zimmermann, R., An, Z., Szidat, S., Baltensperger, U., Haddad, I.E., Prevot, A.S.H. (2014) High Secondary Aerosol Contribution to Particulate Pollution during Haze Events in China. Nature 514, 218-222. https://doi.org/10.1038/nature13774
  23. Ichikawa, Y., Inoue, T., Oohashi, H., Watanabe, T., Ishii, K., Naito, S. (2015a) Analysis of $PM_{2.5}$ episode that occurred in Chiba Prefecture on November 4th, 2013, which led to the issuing of an alert based on the provisional standard for the first time in eastern Japan. Journal of Japan Society for Atmospheric Environment 50, 152-165 (in Japanese with English abstract).
  24. Ichikawa, Y., Naito, S., Ishii, K., Oohashi, H. (2015b) Seasonal variation of $PM_{2.5}$ components observed in an industrial area of Chiba Prefecture, Japan. Asian Journal of Atmospheric Environment 9, 66-77. https://doi.org/10.5572/ajae.2015.9.1.066
  25. Jia, Y., Clements, A.L., Fraser, M.P. (2010) Saccharide composition in atmospheric particulate matter in the southwest US and estimates of source contributions. Journal of Aerosol Science 41, 62-73. https://doi.org/10.1016/j.jaerosci.2009.08.005
  26. Jung, J., Lee, S., Kim, H., Kim, D., Lee, H., Oh, S. (2014) Quantitative determination of the biomassburning contribution to atmospheric carbonaceous aerosols in Daejeon, Korea, during the rice-harvest period. Atmospheric Environment 89, 642-650. https://doi.org/10.1016/j.atmosenv.2014.03.010
  27. Kaneyasu, N., Igarashi, Y., Sawa, Y., Takahashi, H., Takada, H., Kumata, H., Holler, R. (2007) Chemical and optical properties of 2003 Siberian forest fire smoke observed at the summit of Mt. Fuji, Japan. Journal of Geophysical Research 112, D13214.
  28. Kumagai, K., Iijima, A., Shimoda, M., Saitoh, Y., Kozawa, K., Hagino, H., Sakamoto, K. (2010) Determination of dicarboxylic acids and levoglucosan in fine particles in the Kanto Plain, Japan, for source apportionment of organic aerosols. Aerosol and Air Quality Research 10, 282-291. https://doi.org/10.4209/aaqr.2009.11.0075
  29. Lee, T., Sullivan, A.P., Mack, L., Jimenez, J.L., Kreidenweis, S.M., Onasch, T.B., Worsnop, D.R., Malm, W., Wold, C.E., Hao, W.M., Collett Jr., J.L. (2010) Chemical smoke marker emissions during flaming and smoldering phases of laboratory open burning of wildland fuels. Aerosol Science and Technology 44, DOI:10.1080/02786826.2010.499884. https://doi.org/10.1080/02786826.2010.499884
  30. Li, X., Chen, M., Le, H.P., Wang, F., Guo, Z., Iinuma, Y., Chen, J., Herrmann, H. (2016) Atmospheric outflow of $PM_{2.5}$ saccharides from megacity Shanghai to East China Sea: Impact of biological and biomass burning sources. Atmospheric Environment 143, 1-14. https://doi.org/10.1016/j.atmosenv.2016.08.039
  31. Lin, P., Engling, G., Yu, J.Z. (2010) Humic-like substances in fresh emissions of rice straw burning and in ambient aerosols in the Pearl River Delta Region, China. Atmospheric Chemistry and Physics 10, 6487-6500. https://doi.org/10.5194/acp-10-6487-2010
  32. Mayol-Bracero, O.L., Guyon, P., Graham, B., Roberts, G., Andreae, M.O., Decesari, S., Facchini, M.C., Fuzzi, S., Artaxo, P. (2002) Water-soluble organic compounds in biomass burning aerosols over Amazonia, 2. Apportionment of the chemical composition and importance of the polyacidic fraction. Journal of Geophysical Research 107, 8091. https://doi.org/10.1029/2001JD000522
  33. Novakov, T., Corrigan, C.E. (1995) Thermal characterization of biomass smoke particles. Microchimica Acta 119, 157-166. https://doi.org/10.1007/BF01244864
  34. Novakov, T., Corrigan, C.E. (1996) Cloud condensation nucleus activity of the organic component of biomass smoke particles. Geophysical Research Letters 23, 2141-2144. https://doi.org/10.1029/96GL01971
  35. Park, S.S., Yu, J. (2016) Chemical and light absorption properties of humic-like substances from biomass burning emissions under controlled combustion experiments. Atmospheric Environment 136, 114-122. https://doi.org/10.1016/j.atmosenv.2016.04.022
  36. Piletic, I.R., Offenberg, J.H., Olson, D.A., Jaoui, M., Krug, J., Lewandowski, M., Turlington, J.M., Kleindienst, T.E. (2013) Constraining carbonaceous aerosol sources in a receptor model by including $^{14}C$ data with redox species, organic tracers, and elemental/organic carbon measurements. Atmospheric Environment 80, 216-225. https://doi.org/10.1016/j.atmosenv.2013.07.062
  37. Rastogi, N., Singh, A., Singh, D., Sarin, M.M. (2014) Chemical characteristics of $PM_{2.5}$ at a source region of biomass burning emissions: Evidence for secondary aerosol formation. Environmental Pollution 184, 563-569. https://doi.org/10.1016/j.envpol.2013.09.037
  38. Reff, A., Bhave, P.V., Simon, H., Pace, T.G., Pouliot, G.A., Mobley, J.D., Houyoux, M. (2009) Emissions inventory of $PM_{2.5}$ trace elements across the United State. Environmental Science and Technology 43, 5790-5796. https://doi.org/10.1021/es802930x
  39. Sang, X., Zhang, Z., Chan, C., Engling, G. (2013) Source categories and contribution of biomass smoke to organic aerosol over the southeastern Tibetan Plateau. Atmospheric Environment 78, 113-123. https://doi.org/10.1016/j.atmosenv.2012.12.012
  40. Scaramboni, C., Urban, R.C., Lima-Souza, M., Nogueira, R.F.P., Cardoso, A.A., Allen, A.G., Campos, M.L.A.M. (2015) Total sugars in atmospheric aerosols: An alternative tracer for biomass burning. Atmospheric Environment 100, 185-192. https://doi.org/10.1016/j.atmosenv.2014.11.003
  41. Schmidl, C., Bauer, H., Dattler, A., Hitzenberger, R., Weissenboeck, G., Marr, I.L., Puxbaum, H. (2008) Chemical characterisation of particle emissions from burning leaves. Atmospheric Environment 42, 9070-9079. https://doi.org/10.1016/j.atmosenv.2008.09.010
  42. Shahid, I., Kistler, M., Mukhtar, A., Cruz, C.R.S., Heidi, B., Puxbaum, H. (2015) Chemical composition of particles from traditional burning of Pakistani wood species. Atmospheric Environment 121, 35-41. https://doi.org/10.1016/j.atmosenv.2015.01.041
  43. Simoneit, B.R.T., Rogge, W.F., Mazurek, M.A., Standley, L.J., Hildemann, L.M., Cass, G.R. (1993) Lignin pyrolysis products, lignans, and resin acids as specific tracers of plant classes in emissions from biomass combustion. Environmental Science and Technology 27, 2533-2541. https://doi.org/10.1021/es00048a034
  44. Simoneit, B.R.T., Schauer, J.J., Nolte, C.G., Oros, D.R., Elias, V.O., Fraser, M.P., Rogge, W.F., Cass, G.R. (1999) Levoglucosan, a tracer for cellulose in biomass burning and atmospheric particles. Atmospheric Environment 33, 173-182. https://doi.org/10.1016/S1352-2310(98)00145-9
  45. Simoneit, B.R.T. (2002) Biomass burning - a review of organic tracers for smoke from incomplete combustion. Applied Geochemistry 17, 129-162. https://doi.org/10.1016/S0883-2927(01)00061-0
  46. Simoneit, B.R.T., Kobayashi, M., Mochida, M., Kawamura, K., Lee, M., Lim, H., Turpin, B.J., Komazaki, Y. (2004) Composition and major sources of organic compounds of aerosol particulate matter sampled during the ACE-Asia campaign. Journal of Geophysical Research 109, D19S10.
  47. Sullivan, A.P., Holden, A.S., Patterson, L.A., McMeeking, G.R., Kreidenweis, S.M., Malm, W.C., Hao, W.M., Wold, C.E., Collett Jr., J.L. (2008) A method for smoke marker measurements and its potential application for determining the contribution of biomass burning from wildfires and prescribed fires to ambient $PM_{2.5}$ organic carbon. Journal of Geophysical Research 113, D22302. https://doi.org/10.1029/2008JD010216
  48. Takahashi, K., Fushimi, A., Morino, Y., Iijima, A., Yonemochi, S., Hayami, H., Hasegawa, S., Tanabe, K., Kobayashi, S. (2011) Source apportionment of ambient fine particle using a receptor model combined with radiocarbon content in Northern Kanto area. Journal of Japan Society for Atmospheric Environment 46, 156-163 (in Japanese with English abstract).
  49. Theodosi, C., Grivas, G., Zarmpas, P., Chaloulakou, A., Mihalopoulos, N. (2011) Mass and chemical composition of size-segregated aerosols (PM1, $PM_{2.5}$, PM10) over Athens, Greece: local versus regional sources. Atmospheric Chemistry and Physics 11, 11895-11911. https://doi.org/10.5194/acp-11-11895-2011
  50. Tokyo Metropolitan Government (2011), https://www.kankyo.metro.tokyo.jp/air/conference/particulate_matter/study_committee_07.html (in Japanese, Accessed on October 10, 2016).
  51. Turpin, B.J., Lim, H.J. (2001) Species contributions to $PM_{2.5}$ mass concentrations: Revisiting common assumptions for estimating organic mass. Aerosol Science and Technology 35, 602-610. https://doi.org/10.1080/02786820119445
  52. Urban, R.C., Alves, C.A., Allen, A.G., Cardoso, A.A., Queiroz, M.E.C., Campos, M.L.A.M. (2014) Sugar markers in aerosol particles from an agro-industrial region in Brazil. Atmospheric Environment 90, 106-112. https://doi.org/10.1016/j.atmosenv.2014.03.034
  53. Vicente, E.D., Duarte, M.A., Tarelho, L.A.C., Nunes, T.F., Amato, F., Querol, X., Colombi, C., Gianelle, V., Alves, C.A. (2015) Particulate and gaseous emissions from the combustion of different biofuels in a pellet stove. Atmospheric Environment 120, 15-27. https://doi.org/10.1016/j.atmosenv.2015.08.067
  54. Wang, L., Xin, J., Li, X., Wang, Y. (2015a) The variability of biomass burning and its influence of regional aerosol properties during the wheat harvest season in North China. Atmospheric Research 157, 153-163. https://doi.org/10.1016/j.atmosres.2015.01.009
  55. Wang, Q.Q., Huang, X.H.H., Zhang, T., Zhang, Q., Feng, Y., Yuan, Z., Wu, D., Lau, A.K.H., Yu, J.Z. (2015b) Organic tracer-based source analysis of $PM_{2.5}$ organic and elemental carbon: A case study a Dongguan in the Pearl River Delta, China. Atmospheric Environment 118, 164-175. https://doi.org/10.1016/j.atmosenv.2015.07.033
  56. Yang, F., Kawamura, K., Chen, J., Ho, K., Lee, S., Gao, Y., Cui, L., Wang, T., Fu, P. (2016) Anthropogenic and biogenic organic compounds in summertime fine aerosols ($PM_{2.5}$) in Beijing, China. Atmospheric Environment 124, 166-175. https://doi.org/10.1016/j.atmosenv.2015.08.095
  57. Yu, J.Z., Xu, J., Yang, H. (2002) Charring characteristics of atmospheric organic particulate matter in thermal analysis. Environmental Science and Technology 36, 754-761. https://doi.org/10.1021/es015540q
  58. Zhang, Q., Worsnop, D.R., Canagaratna, M.R., Limenez, J.L. (2005) Hydrocarbon-like and oxygenated organic aerosols in Pittsburgh: insight into sources and processes of organic aerosols. Atmospheric Chemistry and Physics 5, 3289-3311. https://doi.org/10.5194/acp-5-3289-2005
  59. Zhang T., Wooster, M.J., Green, D.C., Main, B. (2015) New field-based agricultural biomass burning trace gas, $PM_{2.5}$, and black carbon emission ratios and factors measured in situ at crop residue fires in Eastern China. Atmospheric Environment 121, 22-34. https://doi.org/10.1016/j.atmosenv.2015.05.010
  60. Zhang, Y., Shao, M., Zhang, Y., Zeng, L., He, L., Zhu, B., Wei, Y., Zhu, X. (2007) Source profiles of particulate organic matters emitted from cereal straw burnings. Journal of Environmental Sciences 19, 167-175. https://doi.org/10.1016/S1001-0742(07)60027-8

Cited by

  1. Absorption properties and size distribution of aerosol particles during the fall season at an urban site of Gwangju, Korea vol.24, pp.1, 2018, https://doi.org/10.4491/eer.2018.166