DOI QR코드

DOI QR Code

Rapid bacterial identification using Raman spectroscopy

라만 분광법을 활용한 세균 검측 기술

  • No, Jee Hyun (Department of Environment Engineering, Yonsei University) ;
  • Lee, Tae Kwon (Department of Environment Engineering, Yonsei University)
  • 노지현 (연세대학교 환경공학과) ;
  • 이태권 (연세대학교 환경공학과)
  • Received : 2017.06.02
  • Accepted : 2017.06.27
  • Published : 2017.06.30

Abstract

Raman microspectroscopy is a promising tool for microbial analysis at single cell level since it can rapidly measure the cell materials including lipids, nucleic acids, and proteins by measuring the inelastic scattering of a molecule irradiated by monochromatic lights. Using Raman spectra provides high specificity and sensitivity in classification of bacteria at the strain level. In addition, a Raman approach coupled with stabled isotope such as $^{13}C$ and $^2H$ is able to detect and quantify general metabolic activity at single cell level. After bacterial detection process by Raman microspectroscopy, interested unculturable cell sorting and single cell genomics can be accomplished by combination with optical tweezer and microfluidic devices. In this review, the characteristics and applications of Raman microspectroscopy were reviewed and summarized in order to provide a better understanding of microbial analysis using Raman spectroscopy.

Keywords

bacterial detection;cell sorting;Raman microspectroscopy;single cell;stable isotope

Acknowledgement

Supported by : 한국연구재단

References

  1. Amann, R. and Fuchs, B.M. 2008. Single-cell identification in microbial communities by improved fluorescence in situ hybridization techniques. Nat. Rev. Microbiol. 6, 339-348. https://doi.org/10.1038/nrmicro1888
  2. Ashton, L., Lau, K., Winder, C.L., and Goodacre, R. 2011. Raman spectroscopy: Lighting up the future of microbial identification. Future Microbiol. 6, 991-997. https://doi.org/10.2217/fmb.11.89
  3. Assaf, A., Cordella, C.B., and Thouand, G. 2014. Raman spectroscopy applied to the horizontal methods ISO 6579: 2002 to identify Salmonella spp. in the food industry. Anal. Bioanal. Chem. 406, 4899-4910. https://doi.org/10.1007/s00216-014-7909-2
  4. Berry, D., Mader, E., Lee, T.K., Woebken, D., Wang, Y., Zhu, D., Palatinszky, M., Schintlmeister, A., Schmid, M.C., Hanson, B. T., et al. 2015. Tracking heavy water (D2O) incorporation for identifying and sorting active microbial cells. Proc. Natl. Acad. Sci. USA 112, E194-203. https://doi.org/10.1073/pnas.1420406112
  5. Buijtels, P.C., Willemse-Erix, H.F., Petit, P.L., Endtz, H.P., Puppels, G.J., Verbrugh, H.A., van Belkum, A., van Soolingen, D., and Maquelin, K. 2008. Rapid identification of mycobacteria by Raman spectroscopy. J. Clin. Microbiol. 46, 961-965. https://doi.org/10.1128/JCM.01763-07
  6. Chen, P., Tian, Q., Baek, S., Shang, X., Park, A., Liu, Z., Yao, X., Wang, J., Wang, X., and Cheng, Y. 2011. Laser Raman detection of platelet as a non-invasive approach for early and differential diagnosis of alzheimer's disease. Laser Phys. Lett. 8, 547. https://doi.org/10.1002/lapl.201110016
  7. Deng, H., Bloomfield, V.A., Benevides, J.M., and Thomas, G.J. 1999. Dependence of the Raman signature of genomic B‐DNA on nucleotide base sequence. Biopolymers 50, 656-666. https://doi.org/10.1002/(SICI)1097-0282(199911)50:6<656::AID-BIP10>3.0.CO;2-9
  8. Eder, S.H., Gigler, A.M., Hanzlik, M., and Winklhofer, M. 2014. Sub-micrometer-scale mapping of magnetite crystals and sulfur globules in magnetotactic bacteria using confocal Raman micro-spectrometry. PLoS One 9, e107356. https://doi.org/10.1371/journal.pone.0107356
  9. Edwards, H.G.M., Hutchinson, I.B., Ingley, R., Parnell, J., Vítek, P., and Jehlička, J. 2013. Raman spectroscopic analysis of geological and biogeological specimens of relevance to the exomars mission. Astrobiology 13, 543-549. https://doi.org/10.1089/ast.2012.0872
  10. Eichorst, S.A., Strasser, F., Woyke, T., Schintlmeister, A., Wagner, M., and Woebken, D. 2015. Advancements in the application of NanoSIMS and Raman microspectroscopy to investigate the activity of microbial cells in soils. FEMS Microbiol. Ecol. 91, fiv106. https://doi.org/10.1093/femsec/fiv106
  11. Hoppe, P., Cohen, S., and Meibom, A. 2013. Nanosims: Technical aspects and applications in cosmochemistry and biological geochemistry. Geostand. Geoanal. Res. 37, 111-154. https://doi.org/10.1111/j.1751-908X.2013.00239.x
  12. Huang, W.E., Ferguson, A., Singer, A.C., Lawson, K., Thompson, I.P., Kalin, R.M., Larkin, M.J., Bailey, M.J., and Whiteley, A.S. 2009a. Resolving genetic functions within microbial populations: in situ analyses using rRNA and mRNA stable isotope probing coupled with single-cell Raman-fluorescence in situ hybridization. Appl. Environ. Microbiol. 75, 234-241. https://doi.org/10.1128/AEM.01861-08
  13. Huang, W.E., Li, M., Jarvis, R.M., Goodacre, R., and Banwart, S.A. 2010. Shining light on the microbial world: The application of Raman microspectroscopy. Adv. Appl. Microbiol. 70, 153-186.
  14. Huang, W.E., Stoecker, K., Griffiths, R., Newbold, L., Daims, H., Whiteley, A.S., and Wagner, M. 2007. Raman‐FISH: Combining stable‐isotope Raman spectroscopy and fluorescence in situ hybridization for the single cell analysis of identity and function. Environ. Microbiol. 9, 1878-1889. https://doi.org/10.1111/j.1462-2920.2007.01352.x
  15. Huang, W.E., Ward, A.D., and Whiteley, A.S. 2009b. Raman tweezers sorting of single microbial cells. Environ. Microbiol. Rep. 1, 44-49. https://doi.org/10.1111/j.1758-2229.2008.00002.x
  16. Ibrahim, S.F. and van den Engh, G. 2007. Flow cytometry and cell sorting, pp. 19-39. Cell separation, Springer.
  17. Klos, S., Kampe, B., Sachse, S., Rösch, P., Straube, E., Pfister, W., Kiehntopf, M., and Popp, J. 2013. Culture independent Raman spectroscopic identification of urinary tract infection pathogens: A proof of principle study. Anal. Chem. 85, 9610-9616. https://doi.org/10.1021/ac401806f
  18. Kong, K., Kendall, C., Stone, N., and Notingher, I. 2015. Raman spectroscopy for medical diagnostics - from in-vitro biofluid assays to in-vivo cancer detection. Adv. Drug Deliv. Rev. 89, 121-134. https://doi.org/10.1016/j.addr.2015.03.009
  19. Kubryk, P., Kölschbach, J.S., Marozava, S., Lueders, T., Meckenstock, R.U., Niessner, R., and Ivleva, N.P. 2015. Exploring the potential of stable isotope (resonance) Raman microspectroscopy and surface-enhanced Raman scattering for the analysis of microorganisms at single cell level. Anal. Chem. 87, 6622-6630. https://doi.org/10.1021/acs.analchem.5b00673
  20. Lewis, I.R. and Edwards, H. 2001. Handbook of Raman spectroscopy: From the research laboratory to the process line, CRC Press.
  21. Li, M., Canniffe, D.P., Jackson, P.J., Davison, P.A., FitzGerald, S., Dickman, M.J., Burgess, J.G., Hunter, C.N., and Huang, W.E. 2012. Rapid resonance Raman microspectroscopy to probe carbon dioxide fixation by single cells in microbial communities. ISME J. 6, 875-885. https://doi.org/10.1038/ismej.2011.150
  22. Munchberg, U., Rosch, P., Bauer, M., and Popp, J. 2014. Raman spectroscopic identification of single bacterial cells under antibiotic influence. Anal. Bioanal. Chem. 406, 3041-3050. https://doi.org/10.1007/s00216-014-7747-2
  23. Maquelin, K., Kirschner, C., Choo-Smith, L.P., van den Braak, N., Endtz, H.P., Naumann, D., and Puppels, G. 2002. Identification of medically relevant microorganisms by vibrational spectroscopy. J. Microbiol. Methods 51, 255-271. https://doi.org/10.1016/S0167-7012(02)00127-6
  24. Meisel, S., Stöckel, S., Elschner, M., Melzer, F., Rösch, P., and Popp, J. 2012. Raman spectroscopy as a potential tool for detection of Brucella spp. in milk. Appl. Environ. Microbiol. 78, 5575-5583. https://doi.org/10.1128/AEM.00637-12
  25. Meisel, S., Stöckel, S., Elschner, M., Rösch, P., and Popp, J. 2011. Assessment of two isolation techniques for bacteria in milk towards their compatibility with Raman spectroscopy. Analyst. 136, 4997-5005. https://doi.org/10.1039/c1an15761b
  26. Muhamadali, H., Chisanga, M., Subaihi, A., and Goodacre, R. 2015. Combining Raman and FT-IR spectroscopy with quantitative isotopic labeling for differentiation of E. coli cells at community and single cell levels. Anal. Chem. 87, 4578-4586. https://doi.org/10.1021/acs.analchem.5b00892
  27. Pahlow, S., Meisel, S., Cialla-May, D., Weber, K., Rosch, P., and Popp, J. 2015. Isolation and identification of bacteria by means of Raman spectroscopy. Adv. Drug Deliv. Rev. 89, 105-120. https://doi.org/10.1016/j.addr.2015.04.006
  28. Pichardo-Molina, J., Frausto-Reyes, C., Barbosa-Garcia, O., Huerta- Franco, R., Gonzalez-Trujillo, J., Ramirez-Alvarado, C., Gutierrez- Juarez, G., and Medina-Gutierrez, C. 2007. Raman spectroscopy and multivariate analysis of serum samples from breast cancer patients. Lasers Med. Sci. 22, 229-236. https://doi.org/10.1007/s10103-006-0432-8
  29. Rosch, P., Harz, M., Schmitt, M., Peschke, K.D., Ronneberger, O., Burkhardt, H., Motzkus, H.W., Lankers, M., Hofer, S., and Thiele, H. 2005. Chemotaxonomic identification of single bacteria by micro-Raman spectroscopy: Application to clean-room-relevant biological contaminations. Appl. Environ. Microbiol. 71, 1626-1637. https://doi.org/10.1128/AEM.71.3.1626-1637.2005
  30. Segata, N., Boernigen, D., Tickle, T.L., Morgan, X.C., Garrett, W.S., and Huttenhower, C. 2013. Computational meta'omics for microbial community studies. Mol. Syst. Biol. 9, 666.
  31. Sharma, B., Frontiera, R.R., Henry, A.I., Ringe, E., and Van Duyne, R.P. 2012. SERS: Materials, applications, and the future. Mater. Today 15, 16-25. https://doi.org/10.1016/S1369-7021(12)70017-2
  32. Silge, A., Schumacher, W., Rosch, P., Da Costa Filho, P.A., Gerard, C., and Popp, J. 2014. Identification of water-conditioned Pseudomonas aeruginosa by Raman microspectroscopy on a single cell level. Syst. Appl. Microbiol. 37, 360-367. https://doi.org/10.1016/j.syapm.2014.05.007
  33. Smith, G.D. and Clark, R.J. 2004. Raman microscopy in archaeological science. J. Archaeol. Sci. 31, 1137-1160. https://doi.org/10.1016/j.jas.2004.02.008
  34. Stockel, S., Kirchhoff, J., Neugebauer, U., Rosch, P., and Popp, J. 2016. The application of Raman spectroscopy for the detection and identification of microorganisms. J. Raman Spectrosc. 47, 89-109. https://doi.org/10.1002/jrs.4844
  35. Stepanauskas, R. and Sieracki, M.E. 2007. Matching phylogeny and metabolism in the uncultured marine bacteria, one cell at a time. Proc. Natl. Acad. Sci. USA 104, 9052-9057. https://doi.org/10.1073/pnas.0700496104
  36. Tringe, S.G., Von Mering, C., Kobayashi, A., Salamov, A.A., Chen, K., Chang, H.W., Podar, M., Short, J.M., Mathur, E.J., and Detter, J.C. 2005. Comparative metagenomics of microbial communities. Science 308, 554-557. https://doi.org/10.1126/science.1107851
  37. van de Vossenberg, J., Tervahauta, H., Maquelin, K., Blokker-Koopmans, C.H., Uytewaal-Aarts, M., van der Kooij, D., van Wezel, A.P., and van der Gaag, B. 2013. Identification of bacteria in drinking water with Raman spectroscopy. Anal. Methods 5, 2679-2687. https://doi.org/10.1039/c3ay40289d
  38. van Manen, H.J., Lenferink, A., and Otto, C. 2008. Noninvasive imaging of protein metabolic labeling in single human cells using stable isotopes and Raman microscopy. Anal. Chem. 80, 9576-9582. https://doi.org/10.1021/ac801841y
  39. Wang, Y., Huang, W.E., Cui, L., and Wagner, M. 2016. Single cell stable isotope probing in microbiology using Raman microspectroscopy. Curr. Opin. Biotechnol. 41, 34-42. https://doi.org/10.1016/j.copbio.2016.04.018
  40. Wang, Y., Ji, Y., Wharfe, E.S., Meadows, R.S., March, P., Goodacre, R., Xu, J., and Huang, W.E. 2013. Raman activated cell ejection for isolation of single cells. Anal. Chem. 85, 10697-10701. https://doi.org/10.1021/ac403107p
  41. Williams, A.C. and Edwards, H.G.M. 1994. Fourier transform raman spectroscopy of bacterial cell walls. J. Raman Spectrosc. 25, 673-677. https://doi.org/10.1002/jrs.1250250730
  42. Xie, C., Mace, J., Dinno, M., Li, Y., Tang, W., Newton, R., and Gemperline, P. 2005. Identification of single bacterial cells in aqueous solution using confocal laser tweezers Raman spectroscopy. Anal. Chem. 77, 4390-4397. https://doi.org/10.1021/ac0504971
  43. Xie, X.S., Yu, J., and Yang, W.Y. 2006. Living cells as test tubes. Science 312, 228-230. https://doi.org/10.1126/science.1127566
  44. Zengler, K. 2009. Central role of the cell in microbial ecology. Microbiol. Mol. Biol. Rev. 73, 712-729. https://doi.org/10.1128/MMBR.00027-09