DOI QR코드

DOI QR Code

Efficacy of Curcumin in the Modulation of Anxiety Provoked by Sulfite, a Food Preservative, in Rats

  • Noorafshan, Ali ;
  • Vafabin, Masoud ;
  • Karbalay-Doust, Saied ;
  • Asadi-Golshan, Reza
  • Received : 2016.12.22
  • Accepted : 2017.03.13
  • Published : 2017.06.30

Abstract

Sulfites are used as food preservatives and excessive sulfite might disturb the body systems including the brain. Curcumin shows protective effects on the nervous system toxicity. The present study aimed to evaluate the protective role of curcumin in sulfite-induced anxiety in rats. Male rats were divided into five groups. The rats in groups I to V received distilled water (vehicle of sulfite, 1 mL/d), olive oil (vehicle of curcumin, 1 mL/d), curcumin (100 mg/kg/d), sulfite (25 mg/kg/d), and sulfite+curcumin, respectively, by daily gastric gavage for 8 weeks. At the end of 8 weeks the rats were tested in the elevated plus-maze for anxiety. The results showed that concomitant treatment of curcumin during sulfite consumption prevented the reduction of the time spent in the open arm and entrance to the open arm (the indexes of anxiety). Besides, an increase was found in motor activity of the rats in the sulfite+curcumin group compared to the sulfite-treated animals. Exposure of sulfite in rats can induce anxiety, and curcumin can act as an anti-anxiety agent.

Keywords

anxiety;elevated plus-maze;curcumin;sulfite

References

  1. Kencebay C, Derin N, Ozsoy O, Kipmen-Korgun D, Tanriover G, Ozturk N, Basaranlar G, Yargicoglu-Akkiraz P, Sozen B, Agar A. 2013. Merit of quinacrine in the decrease of ingested sulfite-induced toxic action in rat brain. Food Chem Toxicol 52: 129-136. https://doi.org/10.1016/j.fct.2012.11.015
  2. Gunnison AF, Jacobsen DW. 1987. Sulfite hypersensitivity. A critical review. CRC Crit Rev Toxicol 17: 185-214. https://doi.org/10.3109/10408448709071208
  3. Gunnison AF, Benton AW. 1971. Sulfur dioxide: sulfite. Interaction with mammalian serum and plasma. Arch Environ Health 22: 381-388. https://doi.org/10.1080/00039896.1971.10665860
  4. Gunnison AF. 1981. Sulphite toxicity: a critical review of in vitro and in vivo data. Food Cosmet Toxicol 19: 667-682. https://doi.org/10.1016/0015-6264(81)90519-8
  5. Mottley C, Mason RP. 1988. Sulfate anion free radical formation by the peroxidation of (Bi) sulfite and its reaction with hydroxyl radical scavengers. Arch Biochem Biophys 267: 681-689. https://doi.org/10.1016/0003-9861(88)90077-X
  6. Cooper AJ. 1983. Biochemistry of sulfur-containing amino acids. Annu Rev Biochem 52: 187-222. https://doi.org/10.1146/annurev.bi.52.070183.001155
  7. Hayatsu H, Miller RC Jr. 1972. The cleavage of DNA by the oxygen-dependent reaction of bisulfite. Biochem Biophys Res Commun 46: 120-124. https://doi.org/10.1016/0006-291X(72)90638-9
  8. Rencuzogullari E, Ila HB, Kayraldiz A, Topaktas M. 2001. Chromosome aberrations and sister chromatid exchanges in cultured human lymphocytes treated with sodium metabisulfite, a food preservative. Mutat Res 490: 107-112. https://doi.org/10.1016/S1383-5718(00)00142-X
  9. Cohen HJ, Fridovich I. 1971. Hepatic sulfite oxidase: purification and properties. J Biol Chem 246: 359-366.
  10. Feng C, Tollin G, Enemark JH. 2007. Sulfite oxidizing enzymes. Biochim Biophys Acta 1774: 527-539. https://doi.org/10.1016/j.bbapap.2007.03.006
  11. Mudd SH, Irreverre F, Laster L. 1967. Sulfite oxidase deficiency in man: demonstration of the enzymatic defect. Science 156: 1599-1602. https://doi.org/10.1126/science.156.3782.1599
  12. Cabre F, Marin C, Cascante M, Canela EI. 1990. Occurrence and comparison of sulfite oxidase activity in mammalian tissues. Biochem Med Metab Biol 43: 159-162. https://doi.org/10.1016/0885-4505(90)90021-R
  13. Woo WH, Yang H, Wong KP, Halliwell B. 2003. Sulphite oxidase gene expression in human brain and in other human and rat tissues. Biochem Biophys Res Commun 305: 619-623. https://doi.org/10.1016/S0006-291X(03)00833-7
  14. Kucukatay V, Savcioglu F, Hacioglu G, Yargicoglu P, Agar A. 2005. Effect of sulfite on cognitive function in normal and sulfite oxidase deficient rats. Neurotoxicol Teratol 27: 47-54. https://doi.org/10.1016/j.ntt.2004.10.002
  15. Akdogan I, Kocamaz E, Kucukatay V, Yonguc NG, Ozdemir MB, Murk W. 2011. Hippocampal neuron number loss in rats exposed to ingested sulfite. Toxicol Ind Health 27: 771-778. https://doi.org/10.1177/0748233710397418
  16. Kucukatay V, Agar A, Yargicoglu P, Gumuslu S, Aktekin B. 2003. Changes in somatosensory evoked potentials, lipid peroxidation, and antioxidant enzymes in experimental diabetes: effect of sulfur dioxide. Arch Environ Health 58: 14-22. https://doi.org/10.3200/AEOH.58.1.14-22
  17. Kucukatay V, Hacioglu G, Savcioglu F, Yargicoglu P, Agar A. 2006. Visual evoked potentials in normal and sulfite oxidase deficient rats exposed to ingested sulfite. NeuroToxicology 27: 93-100. https://doi.org/10.1016/j.neuro.2005.07.002
  18. Noorafshan A, Ashkani-Esfahani S. 2013. A review of therapeutic effects of curcumin. Curr Pharm Des 19: 2032-2046.
  19. Cole GM, Teter B, Frautschy SA. 2007. Neuroprotective effects of curcumin. Adv Exp Med Biol 595: 197-212.
  20. Kim DS, Kim JY, Han Y. 2012. Curcuminoids in neurodegenerative diseases. Recent Pat CNS Drug Discov 7: 184-204. https://doi.org/10.2174/157488912803252032
  21. Ringman JM, Frautschy SA, Cole GM, Masterman DL, Cummings JL. 2005. A potential role of the curry spice curcumin in Alzheimer’s disease. Curr Alzheimer Res 2: 131-136. https://doi.org/10.2174/1567205053585882
  22. Chandra V, Pandav R, Dodge HH, Johnston JM, Belle SH, DeKosky ST, Ganguli M. 2001. Incidence of Alzheimer’s disease in a rural community in India: the Indo-US study. Neurology 57: 985-989. https://doi.org/10.1212/WNL.57.6.985
  23. Lalonde R, Strazielle C. 2010. Relations between open-field, elevated plus-maze, and emergence tests in C57BL/6J and BALB/c mice injected with GABA- and 5HT-anxiolytic agents. Fundam Clin Pharmacol 24: 365-376.
  24. Ercan S, Basaranlar G, Gungor NE, Kencebay C, Sahin P, Celik-Ozenci C, Derin N. 2013. Ghrelin inhibits sodium metabisulfite induced oxidative stress and apoptosis in rat gastric mucosa. Food Chem Toxicol 56: 154-161. https://doi.org/10.1016/j.fct.2013.02.019
  25. Noorafshan A, Abdollahifar MA, Karbalay-Doust S, Asadi-Golshan R, Rashidian-Rashidabadi A. 2013. Protective effects of curcumin and sertraline on the behavioral changes in chronic variable stress-induced rats. Exp Neurobiol 22: 96-106. https://doi.org/10.5607/en.2013.22.2.96
  26. Hogg S. 1996. A review of the validity and variability of the elevated plus-maze as an animal model of anxiety. Pharmacol Biochem Behav 54: 21-30. https://doi.org/10.1016/0091-3057(95)02126-4
  27. Sharma AC, Kulkarni SK. 1992. Evaluation of learning and memory mechanisms employing elevated plus-maze in rats and mice. Prog Neuropsychopharmacol Biol Psychiatry 16: 117-125. https://doi.org/10.1016/0278-5846(92)90014-6
  28. Costa R, Tamascia ML, Nogueira MD, Casarini DE, Marcondes FK. 2012. Handling of adolescent rats improves learning and memory and decreases anxiety. J Am Assoc Lab Anim Sci 51: 548-453.
  29. Ozsoy O, Hacioglu G, Savcioglu F, Kucukatay V, Yargicoglu P, Agar A. 2012. The effect of sodium metabisulphite on active avoidance performance in hypercholesterolemic rats. Environ Toxicol 27: 453-460. https://doi.org/10.1002/tox.20657
  30. Kucukatay V, Genc O, Kocamaz E, Emmungil G, Erken H, Bagci H. 2008. Spinal reflexes in normal and sulfite oxidase deficient rats: effect of sulfite exposure. Toxicol Ind Health 24: 147-153. https://doi.org/10.1177/0748233708092225
  31. Meng ZQ, Sang N. 2002. Effect of $SO_2$ derivatives on sodium currents in acutely isolated rat hippocampal CA1 neurons. Sheng Li Xue Bao 54: 267-270.
  32. Du Z, Meng Z. 2004. Modulation of sodium currents in rat dorsal root ganglion neurons by sulfur dioxide derivatives. Brain Res 1010: 127-133. https://doi.org/10.1016/j.brainres.2004.03.011
  33. Dani C, Vestri V, Bertini G, Pratesi S, Rubaltelli FF. 2007. Toxicity of corticosteroids and catecholamines for mice neuronal cell cultures: role of preservatives. J Matern Fetal Neonatal Med 20: 325-333. https://doi.org/10.1080/14767050701227992
  34. Abedinzadeh Z. 2001. Sulfur-centered reactive intermediates derived from the oxidation of sulfur compounds of biological interest. Can J Physiol Pharmacol 79: 166-170. https://doi.org/10.1139/y00-085
  35. Olney JW, Misra CH, de Gubareff T. 1975. Cysteine-S-sulfate: brain damaging metabolite in sulfite oxidase deficiency. J Neuropathol Exp Neurol 34: 167-177. https://doi.org/10.1097/00005072-197503000-00005
  36. Kågedal B, Källberg M, Sörbo B. 1986. A possible involvement of glutathione in the detoxication of sulfite. Biochem Biophys Res Commun 136: 1036-1041. https://doi.org/10.1016/0006-291X(86)90437-7
  37. Kumar A, Singh A. 2008. Possible nitric oxide modulation in protective effect of (Curcuma longa, Zingiberaceae) against sleep deprivation-induced behavioral alterations and oxidative damage in mice. Phytomedicine 15: 577-586. https://doi.org/10.1016/j.phymed.2008.02.003
  38. Benammi H, El Hiba O, Romane A, Gamrani H. 2014. A blunted anxiolytic like effect of curcumin against acute lead induced anxiety in rat: involvement of serotonin. Acta Histochem 116: 920-925. https://doi.org/10.1016/j.acthis.2014.03.002
  39. Gilhotra N, Dhingra D. 2010. GABAergic and nitriergic modulation by curcumin for its antianxiety-like activity in mice. Brain Res 1352: 167-175. https://doi.org/10.1016/j.brainres.2010.07.007
  40. Haider S, Naqvi F, Batool Z, Tabassum S, Sadir S, Liaquat L, Naqvi F, Zuberi NA, Shakeel H, Perveen T. 2015. Pretreatment with curcumin attenuates anxiety while strengthens memory performance after one short stress experience in male rats. Brain Res Bull 115: 1-8. https://doi.org/10.1016/j.brainresbull.2015.04.001
  41. Khalatbary AR. 2013. Olive oil phenols and neuroprotection. Nutr Neurosci 16: 243-249. https://doi.org/10.1179/1476830513Y.0000000052

Acknowledgement

Supported by : Shiraz University of Medical Sciences