DOI QR코드

DOI QR Code

Endophytic Yeasts Colonize Roots of Ulmus parvifolia Jacq. and Quercus salicina Blume

  • Kim, Jong-Shik (Gyeongbuk Institute for Marine Bio-Industry, Department of Research and Development) ;
  • Kim, Dae-Shin (World Heritage Office, Jeju Special Self-Governing Provincial Government)
  • Received : 2017.06.09
  • Accepted : 2017.06.21
  • Published : 2017.06.30

Abstract

BACKGROUND: Identification and characterization of endophytic yeasts inhabiting the roots of Ulmus parvifolia Jacq. and Quercus salicina Blume require biotechnological and culture-based techniques. METHODS AND RESULTS: Homogenized U. parvifolia and Q. salicina root samples were spread onto four types of agar medium containing ancgtibiotics, L-sorbose, and Triton X-100. In total, 25 yeast strains were isolated and subjected to phylogenetic analysis based on their internal transcribed spacer region sequences. The results revealed that the yeast genera Cyberlindnera (12 isolates) and Cryptococcus (1 isolate) were associated with roots of U. parvifolia; and the genera Rhodotorula (8 isolates), Trichosporon (3 isolates), and Kluyveromyces (1 isolate) were associated with roots of Q. salicina. Additionally, a Kluyveromyces isolate produced a detectable level of bioethanol. The yeast strains reported herein may be used in industrial production of biosurfactants and bioethanol. CONCLUSION: Our findings revealed that the endophytic yeast genera Cyberlindnera and Cryptococcus predominated in roots of U. parvifolia; and the genera Rhodotorula (8 isolates), Trichosporon (3 isolates), and Kluyveromyces (1 isolate) predominated in roots of Q. salicina. Additionally, Kluyveromyces isolates produced a detectable level of bioethanol.

Keywords

Endophytic yeast;U. parvifolia;Q. salicina;roots;ITS gene

References

  1. Botha, A. (2011). The importance and ecology of yeasts in soil. Soil Biology and Biochemistry, 43(1), 1-8. https://doi.org/10.1016/j.soilbio.2010.10.001
  2. Choi, G. W., Han M. H., & Kim, Y. (2008). Development of glucoamylase & simultaneous saccharification and fermentation process for high-yield bioethanol. KSBB Journal. 23(6), 499-503.
  3. Deak, T. (2009). Ecology and biodiversity of yeasts with potential value in biotechnology. Yeast biotechnology: diversity and applications (eds. Satyanarayana, T., and Kunze, G.), pp. 151-168. Springer Science + Business Media B.V., Dordrecht.
  4. Fonseca, A., and Inacio, J. (2006). Phylloplane yeasts. Biodiversity and ecophysiology of yeasts (ed. Rosa, C. A., and Peter, G.), pp. 263-301, Springer, Berlin.
  5. Goshima, T., Tsuji M., Inoue, H., Yano, S., Hoshino, T., & Matsushika, A. (2013). Bioethanol production from lignocellulosi biomass by a novel Kluyveromyces marxianus strain. Biosciencem, Biotechnology, and Biochemistry. 778(7), 1505-1510.
  6. Kang, H. W., Kim, Y., Park J. Y., Min J. H., & Choi, G. W. (2010). Development of thermostable fusant, CHY1612 for lignocellulosic simultaneous saccharification and fermentation. KSBB Journal. 25(6), 565-571.
  7. Kim, J. I., Kim, H. H., Kin, S. U., Lee, K. T., Ham, I. H., & Whang, W. K. (2008). Antioxidative compounds from Q. salicina Blume Stem. Archives of Pharmacal Research, 31(3), 274. https://doi.org/10.1007/s12272-001-1152-2
  8. KimJ. S. KimD. S. Jeon S. M., & Ko S. H. (2016). Yeasts associated with roots of the endemic plant Mankyua chejuense. Korean Journal of Environmental Agriculture, 35(2), 137-142. https://doi.org/10.5338/KJEA.2016.35.2.18
  9. Kim, J. S. Lee, I. K. Kim, D. W., & Yun, B. S. (2016). Aureosurfactin and 3-deoxyaureosurfactin, novel biosurfactants produced by Aureobasidium pullulans L3-GPY. The Journal of Antibiotics. 69. 759-761. https://doi.org/10.1038/ja.2015.141
  10. Kim, J. S., Kim, D. S., & Ko, S. H. (2017). Yeasts in internal roots of the rare plant Dendropana morbifera. Journal of Korean Oil Chemists' Society, 34(1), 33-40.
  11. Kurtzman, C. P. (2011). The Yeasts, a Taxonomic Study. Lindnera Kurtzman, Robnett & Basehoar-Powers (2008). 5th eds., vol. 3, (eds. C. P. Kurtzman, J. W. Fell & T. Boekhout). pp. 521543. Amsterdam: Elsevier.
  12. Lee, H. J., & Park, S. N. (2011). Antioxidative effect and active component analysis of Q. salicina Blume extracts. Journal of the Society of Cosmetic Scientists of Korea. 37(2), 143-152.
  13. Lee, J. H., Lee, D. H., Choi, H. J., Suyama, Y., Kondo, T., Isagi, Y., & Choi, B. H. (2014). The distribution and population status of Quercus myrsinifolia (Fagaceae) on the Korean Peninsula. Korean Journal of Plant Taxonomy, 44(3), 165-170. https://doi.org/10.11110/kjpt.2014.44.3.165
  14. Lee, T. B. (2003). Coloured flora of Korea. Hyangmunsa, Seoul, Korea.
  15. Lee, Y. N. (2006). New Flora of Korea. Kyo-Hak Publishing Co., Seoul, Korea.
  16. Lee, W. T. (1996). Coloured standard illustrations of Korean plants. Academy Publishing Co., Seoul, Korea.
  17. Raspor, P., &Zupan, J. (2006). Yeast in extreme environments. Biodiversity and ecophysiology of yeasts (eds. Rosa, C. A. & Peter, G.), pp. 370-417. Springer, Berlin.
  18. Rosen M. J., & Kunjappu J. T. (2012). Surfactants in biology. Surfactants and Interfacial Phenomena, pp. 471-501, John Wiley & Sons, Hoboken, NJ, USA.
  19. Saitou N., & Nei M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4(4), 406425.
  20. Sampaio, J. P. (2011). The Yeasts, a Taxonomic Study. Rhodotorula Harrison (1928). 5th eds, vol. 3, (eds. C. P. Kurtzman, J. W. Fell & T. Boekhout). pp. 1873-1927. New York, Elsevier.
  21. Sugita, T. (2011). The Yeasts: a Taxonomic Study. Trichosporon Behrend (1890). 5th eds, vol. 3, (eds. C. P. Kurtzman, J. W. Fell & T. Boekhout). pp. 20152061. San Diego, CA, Elsevier.
  22. Tamang, J. P., & Fleet, G. H. (2009). Yeasts diversity in fermented foods and beverages. Yeast biotechnology: diversity and applications (eds. Satyanarayana, T. and Kunze, G.). pp. 169-198. Springer Science + Business Media B. V., Dordrecht.
  23. Tamura, K. Peterson, D. Peterson, N. Stecher, G, Nei, M., & Kumar, S. (2011). MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28(10), 2731-2739. https://doi.org/10.1093/molbev/msr121
  24. White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplication and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications (eds. Innis, M. A., Gelfand, D. H., Sninsky, J. J. and White, T. J.), pp. 315-322, Academic press, San Diego, USA.