DOI QR코드

DOI QR Code

Comparison of Flavonoid Characteristics between Blueberry (Vaccinium corymbosum) and Black Raspberry (Rubus coreanus) Cultivated in Korea using UPLC-DAD-QTOF/MS

UPLC-DAD-QTOF/MS를 이용한 국내 재배 블루베리(Vaccinium corymbosum)와 복분자(Rubus coreanus)의 플라보노이드 특성 비교

  • Received : 2017.05.23
  • Accepted : 2017.06.21
  • Published : 2017.06.30

Abstract

BACKGROUND: The objective of this study was to identify and compare the main phenolic compounds (anthocyanins, flavonoids, phenolic acids) in blueberry and black raspberry cultivated in Korea using ultra-performance liquid chromatography diode array detection-quadrupole time-of-flight mass spectrometry (UPLC-DAD-QTOF/MS). METHODS AND RESULTS: Twenty-nine flavonoids were identified by comparison of ultraviolet and mass spectra with data in a chemical library and published data. Blueberry contained flavonols including kaempferol, quercetin, isorhamnetin, myricetin, and syringetin aglycones. Isorhamnetin 3-O-robinobioside, kaempferol 3-O-(6"-O-acetyl)glucoside, quercetin, quercetin 3-O-arabinofuranoside (avicularin), quercetin 3-O-(6''-O-malonyl) glucoside, and quercetin 3-O-robinobioside were detected for the first time in blueberry. The flavonoids in raspberry consisted of quercetin aglycone and its glycosides. The mean total flavonoid content in blueberry [143.0 mg/100 g dry weight (DW)] was 1.5-times that in raspberry (95.4 mg/100 g DW). The most abundant flavonoid in blueberry was quercetin 3-O-galactoside (hyperoside, up to 76.1 mg/100 g DW) and that in raspberry was quercetin 3-O-glucuronide (miquelianin, up to 55.5 mg/100 g DW). Miquelianin was not detected in blueberry. CONCLUSION: Flavonol glycosides were the main flavonoids in blueberry and black raspberry cultivated in Korea. The composition and contents of flavonoids differed between blueberry and black raspberry, and may be affected by the cultivar and cultivation conditions.

Keywords

Flavonoid;Rubus coreanus;UPLC-DAD-QTOF/MS;Vaccinium corymbosum

References

  1. Beecher, G. R. (2003). Overview of dietary flavonoids: nomenclature, occurrence and intake. The Journal of Nutrition, 133(10), 3248S-3254S. https://doi.org/10.1093/jn/133.10.3248S
  2. Borges, G., Degeneve, A., Mullen, W., & Crozier, A. (2009). Identification of flavonoid and phenolic antioxidants in black currants, blueberries, raspberries, red currants, and cranberries. Journal of Agricultural and Food Chemistry, 58(7), 3901-3909.
  3. Bradish, C. M., Perkins-Veazie, P., Fernandez, G. E., Xie, G., & Jia, W. (2011). Comparison of flavonoid composition of red raspberries (Rubus idaeus L.) grown in the Southern United States. Journal of Agricultural and Food Chemistry, 60(23), 5779-5786.
  4. Cardenosa, V., Girones-Vilaplana, A., Muriel, J. L., Moreno, D. A., & Moreno-Rojas, J. M. (2016). Influence of genotype, cultivation system and irrigation regime on antioxidant capacity and selected phenolics of blueberries (Vaccinium corymbosum L.). Food Chemistry, 202, 276-283. https://doi.org/10.1016/j.foodchem.2016.01.118
  5. Cho, J. Y., Yoon, I., Jung, D. H., Hyun, S. H., Lee, K. H., Moon, J. H., & Park, K. H. (2012). Jaboticabin and flavonoids from the ripened fruit of black rasberry (Rubus coreanum). Food Science and Biotechnology, 21(4), 1081-1086. https://doi.org/10.1007/s10068-012-0140-z
  6. Cho, M. J., Howard, L. R., Prior, R. L., & Clark, J. R. (2004). Flavonoid glycosides and antioxidant capacity of various blackberry, blueberry and red grape genotypes determined by high-performance liquid chromatography/mass spectrometry. Journal of the Science of Food and Agriculture, 84(13), 1771-1782. https://doi.org/10.1002/jsfa.1885
  7. Croft, K. D. (1998). The chemistry and biological effects of flavonoids and phenolic acidsa. Annals of the New York Academy of Sciences, 854(1), 435-442. https://doi.org/10.1111/j.1749-6632.1998.tb09922.x
  8. Diaconeasa, Z., Florica, R., Rugina, D., Lucian, C., & Socaciu, C. (2014). HPLC/PDA-ESI/MS identification of phenolic acids, flavonol glycosides and antioxidant potential in blueberry, blackberry, raspberries and cranberries. Journal of Food and Nutrition Research, 2(11), 781-785. https://doi.org/10.12691/jfnr-2-11-4
  9. Dincheva, I., Badjakov, I., Kondakova, V., Dobson, P., Mcdougall, G., & Stewart, D. (2013). Identification of the phenolic components in Bulgarian raspberry cultivars by LC-ESI-$MS^n$. International Journal of Agriculture Sciences, 3, 127-37.
  10. Dugo, P., Donato, P., Cacciola, F., Paola Germano, M., Rapisarda, A., & Mondello, L. (2009). Characterization of the polyphenolic fraction of Morus alba leaves extracts by HPLC coupled to a hybrid IT-TOF MS system. Journal of Separation Science, 32(21), 3627-3634. https://doi.org/10.1002/jssc.200900348
  11. Folmer, F., Basavaraju, U., Jaspars, M., Hold, G., El-Omar, E., Dicato, M., & Diederich, M. (2014). Anticancer effects of bioactive berry compounds. Phytochemistry Reviews, 13(1), 295-322. https://doi.org/10.1007/s11101-013-9319-z
  12. Gavrilova, V., Kajdzanoska, M., Gjamovski, V., & Stefova, M. (2011). Separation, characterization and quantification of phenolic compounds in blueberries and red and black currants by HPLC-DAD-ESI-MSn. Journal of Agricultural and Food Chemistry, 59(8), 4009-4018. https://doi.org/10.1021/jf104565y
  13. Gevrenova, R., Badjakov, I., Nikolova, M., & Doichinova, I. (2013). Phenolic derivatives in raspberry (Rubus L.) germplasm collection in Bulgaria. Biochemical Systematics and Ecology, 50, 419-427. https://doi.org/10.1016/j.bse.2013.06.002
  14. Ghosh, D., & Konishi, T. (2007). Anthocyanins and anthocyanin-rich extracts: role in diabetes and eye function. Asia Pacific Journal of Clinical Nutrition, 16(2), 200-208.
  15. Han, J. M., & Chung, H. (2013). Quality characteristics of yanggaeng added with blueberry powder. Korean Journal of Food Preservation. 20(2), 265-271. https://doi.org/10.11002/kjfp.2013.20.2.265
  16. Han, N., Gu, Y., Ye, C., Cao, Y., Liu, Z., & Yin, J. (2012). Antithrombotic activity of fractions and components obtained from raspberry leaves (Rubus chingii). Food Chemistry, 132(1), 181-185. https://doi.org/10.1016/j.foodchem.2011.10.051
  17. Jeon, H., Oh, S. J., Nam, H. S., Song, Y. S., & Choi, K. C. (2015). Reduction of plasma triglycerides and cholesterol in high fat diet-induced hyper-lipidemic mice by n-3 fatty acid from bokbunja (Rubus coreanus Miquel) seed oil. Journal of the Korean Society of Food Science and Nutrition, 44(7), 961-969. https://doi.org/10.3746/jkfn.2015.44.7.961
  18. Jeon, M. H., & Lee, W. J. (2011). Characteristics of blueberry added Makgeolli. Journal of the Korean Society of Food Science and Nutrition, 40(3), 444-449. https://doi.org/10.3746/jkfn.2011.40.3.444
  19. Ji, J. R., & Yoo, S. S. (2010). Quality characteristics of cookies with varied concentrations of blueberry powder. Journal of the East Asian Society of Dietary Life, 20(3), 433-438.
  20. Kader, F., Rovel, B., Girardin, M., & Metche, M. (1996). Fractionation and identification of the phenolic compounds of highbush blueberries (Vaccinium corymbosum, L.). Food Chemistry, 55(1), 35-40. https://doi.org/10.1016/0308-8146(95)00068-2
  21. Kalt, W., McDonald, J. E., & Donner, H. (2000). Anthocyanins, phenolics, and antioxidant capacity of processed lowbush blueberry products. Journal of Food Science, 65(3), 390-393. https://doi.org/10.1111/j.1365-2621.2000.tb16013.x
  22. Katsube, T., Imawaka, N., Kawano, Y., Yamazaki, Y., Shiwaku, K., & Yamane, Y. (2006). Antioxidant flavonol glycosides in mulberry (Morus alba L.) leaves isolated based on LDL antioxidant activity. Food Chemistry, 97(1), 25-31. https://doi.org/10.1016/j.foodchem.2005.03.019
  23. Kim, J. G., Ryou, M. S., Jung, S. M., & Hwang, Y. S. (2010). Effects of cluster and flower thinning on yield and fruit quality in highbush 'Jersey' blueberry. Journal of Bio-Environment Control.
  24. Kim, M. Y., Choi, M. Y., Nam, J. H., & Park, H. J. (2008). Quantitative analysis of flavonoids in the unripe and ripe fruits and the leaves of four Korean Rubus species. Korean Journal of Pharmacognosy. 39(2), 123-126.
  25. Lee, J., Dossett, M., & Finn, C. E. (2013). Anthocyanin fingerprinting of true bokbunja (Rubus coreanus Miq.) fruit. Journal of Functional Foods, 5(4), 1985-1990. https://doi.org/10.1016/j.jff.2013.06.006
  26. Lee M. K., Kim H. W., Kim Y. J., Lee S. H., Jang H. H., Jung H. A., Kim S. B., Lee S. H., Choe J. S., & Kim J. B. (2016). Profiling of flavonoid glycosides in fruits and leaves of jujube (Zizyphus jujuba var. inermis (Bunge) Rehder) using UPLC-DAD-QTOF/MS. Korean Journal of Food Preservation. 23(7), 1004-1011. https://doi.org/10.11002/kjfp.2016.23.7.1004
  27. Lee M. K., Kim H. W., Lee S. H., Kim Y. J., Jang H. H., Jung H. A., Hwang Y. J., Choe J. S., & Kim J. B. (2016). Compositions and contents anthocyanins in blueberry (Vaccinium corymbosum L.) varieties. Korean Journal of Environmental Agriculture, 35(3), 184-190. https://doi.org/10.5338/KJEA.2016.35.3.25
  28. Lee, S. J., & Ahn, B. M. (2009). Changes in physicochemical characteristics of black raspberry wines from different regions during fermentation. Korean Journal of Food Science and Technology, 41(6), 662-667.
  29. Ma, C., Dastmalchi, K., Flores, G., Wu, S. B., Pedraza-Penalosa, P., Long, C., & Kennelly, E. J. (2013). Antioxidant and metabolite profiling of North American and neotropical blueberries using LC-TOF-MS and multivariate analyses. Journal of Agricultural and Food Chemistry, 61(14), 3548-3559. https://doi.org/10.1021/jf400515g
  30. Marks, S. C., Mullen, W., & Crozier, A. (2007). Flavonoid and chlorogenic acid profiles of English cider apples. Journal of the Science of Food and Agriculture, 87(4), 719-728. https://doi.org/10.1002/jsfa.2778
  31. Mikulic-Petkovsek, M., Slatnar, A., Stampar, F., & Veberic, R. (2012). HPLC-$MS^n$ identification and quantification of flavonol glycosides in 28 wild and cultivated berry species. Food Chemistry, 135(4), 2138-2146. https://doi.org/10.1016/j.foodchem.2012.06.115
  32. Miles, T. D., Vandervoort, C., Nair, M. G., & Schilder, A. C. (2013). Characterization and biological activity of flavonoids from ripe fruit of an anthracnose-resistant blueberry cultivar. Physiological and Molecular Plant Pathology, 83, 8-16. https://doi.org/10.1016/j.pmpp.2013.02.004
  33. Moon, H. K., Lee, S. W., & Kim, J. K. (2013). Physicochemical and quality characteristics of the Korean and American blueberries. Korean Journal of Food Preservation, 20(4), 524-531. https://doi.org/10.11002/kjfp.2013.20.4.524
  34. Mullen, W., McGinn, J., Lean, M. E., MacLean, M. R., Gardner, P., Duthie, G. G., Yokota, T., & Crozier, A. (2002). Ellagitannins, flavonoids, and other phenolics in red raspberries and their contribution to antioxidant capacity and vasorelaxation properties. Journal of Agricultural and Food Chemistry, 50(18), 5191-5196. https://doi.org/10.1021/jf020140n
  35. Mullen, W., Yokota, T., Lean, M. E., & Crozier, A. (2003). Analysis of ellagitannins and conjugates of ellagic acid and quercetin in raspberry fruits by LC-$MS^n$. Phytochemistry, 64(2), 617-624. https://doi.org/10.1016/S0031-9422(03)00281-4
  36. Nguelefack, T. B., Mbakam, F. H. K., Tapondjou, L. A., Watcho, P., Nguelefack-Mbuyo, E. P., Ponou, B. K., Kamanyi, A., & Park, H. J. (2011). A dimeric triterpenoid glycoside and flavonoid glycosides with free radical-scavenging activity isolated from Rubus rigidus var. camerunensis. Archives of Pharmacal Research, 34(4), 543-550. https://doi.org/10.1007/s12272-011-0404-9
  37. Nollet, L. M., & Toldra, F. (2012). Handbook of analysis of active compounds in functional foods. pp. 298-301, CRC Press, United States of America.
  38. Oszmianski, J., Wojdylo, A., Gorzelany, J., & Kapusta, I. (2011). Identification and characterization of low molecular weight polyphenols in berry leaf extracts by HPLC-DAD and LC-ESI/MS. Journal of Agricultural and Food Chemistry, 59(24), 12830-12835. https://doi.org/10.1021/jf203052j
  39. Paredes-Lopez, O., Cervantes-Ceja, M. L., Vigna-Perez, M., & Hernandez-Perez, T. (2010). Berries: improving human health and healthy aging, and promoting quality life-a review. Plant Foods for Human Nutrition, 65(3), 299-308. https://doi.org/10.1007/s11130-010-0177-1
  40. Park, S. Y., & Chin, K. B. (2007). Evaluation of antioxidant activity in pork patties containing bokbunja (Rubus coreanus) extract. Korean Journal for Food Science of Animal Resources, 27(4), 432-439. https://doi.org/10.5851/kosfa.2007.27.4.432
  41. Paudel, L., Wyzgoski, F. J., Scheerens, J. C., Chanon, A. M., Reese, R. N., Smiljanic, D., Wesdemiotis, C., Blakeslee, J. J., Riedl, K. M., & Rinaldi, P. L. (2013). Nonanthocyanin secondary metabolites of black raspberry (Rubus occidentalis L.) fruits: identification by HPLC-DAD, NMR, HPLC-ESI-MS, and ESI-MS/MS analyses. Journal of Agricultural and Food Chemistry, 61(49), 12032-12043. https://doi.org/10.1021/jf4039953
  42. Pawlowska, A. M., Camangi, F., Bader, A., & Braca, A. (2009). Flavonoids of Zizyphus jujuba L. and Zizyphus spina-christi (L.) Willd (Rhamnaceae) fruits. Food Chemistry, 112(4), 858-862. https://doi.org/10.1016/j.foodchem.2008.06.053
  43. Samad, N. B., Debnath, T., Ye, M., Hasnat, M. A., & Lim, B. O. (2014). In vitro antioxidant and anti-inflammatory activities of Korean blueberry (Vaccinium corymbosum L.) extracts. Asian Pacific Journal of Tropical Biomedicine, 4(10), 807-815. https://doi.org/10.12980/APJTB.4.2014C1008
  44. Su, Z. (2012). Anthocyanins and flavonoids of Vaccinium L. Pharmaceutical Crops, 3, 7-37. https://doi.org/10.2174/2210290601203010007
  45. Thabti, I., Elfalleh, W., Hannachi, H., Ferchichi, A., & Campos, M. D. G. (2012). Identification and quantification of phenolic acids and flavonol glycosides in Tunisian Morus species by HPLC-DAD and HPLC-MS. Journal of Functional Foods, 4(1), 367-374. https://doi.org/10.1016/j.jff.2012.01.006
  46. Vrhovsek, U., Masuero, D., Palmieri, L., & Mattivi, F. (2012). Identification and quantification of flavonol glycosides in cultivated blueberry cultivars. Journal of Food Composition and Analysis, 25(1), 9-16. https://doi.org/10.1016/j.jfca.2011.04.015
  47. Wang, L. J., Wu, J., Wang, H. X., Li, S. S., Zheng, X. C., Du, H., Xu, Y. J., & Wang, L. S. (2015). Composition of phenolic compounds and antioxidant activity in the leaves of blueberry cultivars. Journal of Functional Foods, 16, 295-304. https://doi.org/10.1016/j.jff.2015.04.027
  48. Wang, S. Y., Chen, C. T., Sciarappa, W., Wang, C. Y., & Camp, M. J. (2008). Fruit quality, antioxidant capacity, and flavonoid content of organically and conventionally grown blueberries. Journal of Agricultural and Food Chemistry, 56(14), 5788-5794. https://doi.org/10.1021/jf703775r
  49. Westwood, M. N. (1988). Temperate-zone pomology. pp. 100-101, second ed. Timber Press, United States of America.
  50. You, Q., Wang, B., Chen, F., Huang, Z., Wang, X., & Luo, P. G. (2011). Comparison of anthocyanins and phenolics in organically and conventionally grown blueberries in selected cultivars. Food Chemistry, 125(1), 201-208. https://doi.org/10.1016/j.foodchem.2010.08.063
  51. Yu, O. K., Kim, M. A., Rho, J. O., Sohn, H. S., & Cha, Y. S. (2007). Quality characteristics and the optimization recipes of chocolate added with Bokbunja (Rubus coreanus Miquel). Journal of the Korean Society of Food Science and Nutrition, 36(9), 1193-1197. https://doi.org/10.3746/jkfn.2007.36.9.1193

Acknowledgement

Supported by : Rural Development Administration