DOI QR코드

DOI QR Code

Roles of Budding Yeast Hrr25 in Recombination and Sporulation

  • Lee, Min-Su (Department of Life Science, Chung-Ang University) ;
  • Joo, Jeong Hwan (Department of Life Science, Chung-Ang University) ;
  • Kim, Keunpil (Department of Life Science, Chung-Ang University)
  • Received : 2017.01.09
  • Accepted : 2017.03.18
  • Published : 2017.06.28

Abstract

Hrr25, a casein kinase $1{\delta}/{\varepsilon}$ homolog in budding yeast, is essential to set up mono-orientation of sister kinetochores during meiosis. Hrr25 kinase activity coordinates sister chromatid cohesion via cohesin phosphorylation. Here, we investigated the prophase role of Hrr25 using the auxin-inducible degron system and by ectopic expression of Hrr25 during yeast meiosis. Hrr25 mediates nuclear division in meiosis I but does not affect DNA replication. We also found that initiation of meiotic double-strand breaks as well as joint molecule formation were normal in HRR25-deficient cells. Thus, Hrr25 is essential for termination of meiotic division but not homologous recombination.

Acknowledgement

Supported by : National Research Foundation of Korea

References

  1. Kleckner N, Zickler D, Jones GH, Dekker J, Padmore R, Henle J, Hutchinson J. 2004. A mechanical basis for chromosome function. Proc. Natl. Acad. Sci. USA 101: 12592-12597. https://doi.org/10.1073/pnas.0402724101
  2. Zickler D, Kleckner N. 1999. Meiotic chromosomes: integrating structure and function. Annu. Rev. Genet. 33: 603-754. https://doi.org/10.1146/annurev.genet.33.1.603
  3. Hochwagen A, Amon A. 2006. Checking your breaks surveillance mechanisms of meiotic recombination. Curr. Biol. 16: 217-228. https://doi.org/10.1016/j.cub.2006.03.009
  4. Uhlmann F, Wernic D, Poupart MA, Koonin EV, Nasmyth K. 2000. Cleavage of cohesin by the CD clan protease separin triggers anaphase in yeast. Cell 103: 375-386. https://doi.org/10.1016/S0092-8674(00)00130-6
  5. Ciosk R, Zachariae W, Michaelis C, Shevchenko A, Mann M, Nasymth K. 1998. An Esp1/Pds1 complex regulates loss of sister chromatid cohesion at the metaphase to anaphase transition in yeast. Cell 93: 1067-1076. https://doi.org/10.1016/S0092-8674(00)81211-8
  6. Katis VL, Lipp JJ, Imre R, Bogdanova A, Okaz E, Habermann B, et al. 2010. Rec8 phosphorylation by casein kinase 1 a nd C dc7-Dbf4 kinase regulates cohesin cleavage by separase during meiosis. Dev. Cell 18: 397-409. https://doi.org/10.1016/j.devcel.2010.01.014
  7. Hauf S, Watanabe Y. 2004. Kinetochore orientation in mitosis and meiosis. Cell 119: 317-327. https://doi.org/10.1016/j.cell.2004.10.014
  8. Corbett KD, Yip CK, Ee LS, Walz T, Amon A, Harrison SC. 2010. The monopolin complex crosslinks kinetochore components to regulate chromosome-microtubule attachments. Cell 142: 556-567. https://doi.org/10.1016/j.cell.2010.07.017
  9. Keeney S. 2001. Mechanism and control of meiotic recombination initiation. Curr. Topics Dev. Biol. 52: 1-53.
  10. Cannavo E, Cejka P. 2014. Sae2 promotes dsDNA endonuclease activity within Mre11-Rad50-Xrs2 to resect DNA breaks. Nature 514: 122-125. https://doi.org/10.1038/nature13771
  11. Sasanuma H, Tawaramoto MS, Lao JP, Hosaka H, Sanda E, Suzuki M, et al. 2013. A new protein complex promoting the assembly of Rad51 filaments. Nat. Commun. 4: 1676. https://doi.org/10.1038/ncomms2678
  12. Kim KP, Weiner BM, Zhang L, Jordan A, Dekker J, Kleckner N. 2010. Sister cohesion and structural axis components mediate homolog bias of meiotic recombination. Cell 143: 924-937. https://doi.org/10.1016/j.cell.2010.11.015
  13. Borner GV, Kleckner N, Hunter N. 2004. Crossover/ noncrossover differentiation, synaptonemal complex formation, and regulatory surveillance at the leptotene/zygotene transition of meiosis. Cell 117: 29-45. https://doi.org/10.1016/S0092-8674(04)00292-2
  14. Hoekstra MF, Liskay RM, Ou AC, DeMaggio AJ, Burbee DG, Heffron F. 1991. HRR25, a putative protein kinase from budding yeast: association with repair of damaged DNA. Science 253: 1031-1034. https://doi.org/10.1126/science.1887218
  15. Petronczki M, Matos J, Mori S, Gregan J, Bogdanova A, Schwickart M, et al. 2006. Monopolar attachment of sister kinetochores at meiosis I requires casein kinase 1. Cell 22: 1049-1064.
  16. Brockman JL, Gross SD, Sussman MR, Anderson RA. 1992. Cell cycle-dependent localization of casein kinase I to mitotic spindles. Proc. Natl. Acad. Sci. USA 89: 9454-9458. https://doi.org/10.1073/pnas.89.20.9454
  17. Argoello-Miranda O, Zagoriy I, Mengoli V, Rojas J, Jonak K, Oz T, et al. 2016. Casein kinase 1 coordinates cohesin cleavage, gametogenesis, and Exit from M phase in meiosis II. Dev. Cell 40: 1-16
  18. Nishimura K, Fukagawa T, Takisawa H, Kakimoto T, Kanemaki M. 2009. An auxin-based degron system for the rapid depletion of proteins in nonplant cells. Nat. Methods 6: 917-922. https://doi.org/10.1038/nmeth.1401
  19. Nishimura K, Kanemaki MT. 2014. Rapid depletion of budding yeast proteins via the fusion of an auxin-inducible degron (AID). Curr. Protoc. Cell Biol. 64: 20.9.1-20.9.16.
  20. Yoon SW, Lee MS, Xaver M, Zhang L, Hong SG, Kong YJ, et al. 2016. Meiotic prophase roles of Rec8 in crossover recombination and chromosome structure. Nucleic Acids Res. 44: 9296-9314.
  21. Ghalei H, Schaub FX, Doherty JR, Noguchi Y, Roush WR, Cleveland JL, et al. 2015. Hrr25/CK1${\delta}$-directed release of Ltv1 from pre-40S ribosomes is necessary for ribosome assembly and cell growth. J. Cell Biol. 208: 745-759. https://doi.org/10.1083/jcb.201409056
  22. Janke C, Magiera MM, Rathfelder N, Taxis C, Reber S, Maekawa H, et al. 2004. A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast 21: 947-962. https://doi.org/10.1002/yea.1142
  23. Cha RS, Weiner BM, Keeney S, Dekker J, Kleckner N. 2000. Progression of meiotic DNA replication is modulated by interchromosomal interaction proteins, negatively by Spo11p and positively by Rec8p. Genes Dev. 14: 493-503.
  24. Lee MS, Yoon SW, Kim KP. 2015. Mitotic cohesin subunit Mcd1 regulates the progression of meiotic recombination in budding yeast. J. Microbiol. Biotechnol. 25: 598-605. https://doi.org/10.4014/jmb.1501.01081
  25. Hong S, Sung Y, Yu M, Lee M, Kleckner N, Kim KP. 2013. The logic and mechanism of homologous recombination partner choice. Mol. Cell 51: 440-453. https://doi.org/10.1016/j.molcel.2013.08.008
  26. Hong S, Kim KP. 2013. Shu1 promotes homolog bias of meiotic recombination in Saccharomyces cerevisiae. Mol. Cells 36: 446-454. https://doi.org/10.1007/s10059-013-0215-6
  27. Lee MS, Yu M, Kim KY, Park GH, Kwack K, Kim KP. 2015. Functional validation of rare human genetic variants involved in homologous recombination using Saccharomyces cerevisiae. PLoS One 10: e0124152. https://doi.org/10.1371/journal.pone.0124152
  28. Yu HG, Koshland D. 2005. Chromosome morphogenesis: condensin-dependent cohesin removal during meiosis. Cell 123: 397-407. https://doi.org/10.1016/j.cell.2005.09.014
  29. Attner MA, Miller MP, Ee LS, Elkin SK, Amon A. 2013. Polo kinase Cdc5 is a central regulator of meiosis I. Proc. Natl. Acad. Sci. USA 110: 14278-14283. https://doi.org/10.1073/pnas.1311845110
  30. Clyne RK, Katis VL, Jessop L, Benjamin KR, Herskowitz I, Lichten M, Nasmyth K. 2003. Polo-like kinase Cdc5 promotes chiamata formation and cosegregation of sister centromeres at meiosis I. Nat. Cell Biol. 5: 480-485. https://doi.org/10.1038/ncb977
  31. Lee BH, Amon A. 2003. Role of Polo-like kinase CDC5 in programming meiosis I chromosome segregation. Science 300: 482-486. https://doi.org/10.1126/science.1081846
  32. Sourirajan A, Lichten M. 2008. Polo-like kinase Cdc5 drives exit from pachytene during budding yeast meiosis. Genes Dev. 22: 2627-2632. https://doi.org/10.1101/gad.1711408
  33. Cho HR, Kong YJ, Hong SG, Kim KP. 2016. Hop2 and Sae3 are required for Dmc1-mediated double-strand break repair via homolog bias during meiosis. Mol. Cells 39: 550-556. https://doi.org/10.14348/molcells.2016.0069
  34. Kong YJ, Joo JH, Kim KP, Hong S. 2017. Hed1 promotes meiotic crossover formation in Saccharomyces cerevisiae. J. Microbiol. Biotechnol. 27: 405-411. https://doi.org/10.4014/jmb.1610.10074