In situ analysis of chemical components induced by steaming between fresh ginseng, steamed ginseng, and red ginseng

  • In, Gyo (Korea Ginseng Research Institute, Korea Ginseng Corporation) ;
  • Ahn, Nam-Geun (Korea Ginseng Research Institute, Korea Ginseng Corporation) ;
  • Bae, Bong-Seok (Korea Ginseng Research Institute, Korea Ginseng Corporation) ;
  • Lee, Myoung-Woo (Korea Ginseng Research Institute, Korea Ginseng Corporation) ;
  • Park, Hee-Won (Korea Ginseng Research Institute, Korea Ginseng Corporation) ;
  • Jang, Kyoung Hwa (Korea Ginseng Research Institute, Korea Ginseng Corporation) ;
  • Cho, Byung-Goo (Korea Ginseng Research Institute, Korea Ginseng Corporation) ;
  • Han, Chang Kyun (Korea Ginseng Research Institute, Korea Ginseng Corporation) ;
  • Park, Chae Kyu (Korea Ginseng Research Institute, Korea Ginseng Corporation) ;
  • Kwak, Yi-Seong (Korea Ginseng Research Institute, Korea Ginseng Corporation)
  • Received : 2016.03.04
  • Accepted : 2016.07.12
  • Published : 2017.07.15


Background: The chemical constituents of Panax ginseng are changed by processing methods such as steaming or sun drying. In the present study, the chemical change of Panax ginseng induced by steaming was monitored in situ. Methods: Samples were separated from the same ginseng root by incision during the steaming process, for in situ monitoring. Sampling was sequentially performed in three stages; FG (fresh ginseng) ${\rightarrow}$ SG (steamed ginseng) ${\rightarrow}$ RG (red ginseng) and 60 samples were prepared and freeze dried. The samples were then analyzed to determine 43 constituents among three stages of P. ginseng. Results: The results showed that six malonyl-ginsenoside (Rg1, Rb1, Rb3, Rc, Rd, Rb2) and 15 amino acids were decreased in concentration during the steaming process. In contrast, ginsenoside-Rh1, 20(S)-Rg2, 20(S, R)-Rg3 and Maillard reaction product such as AF (arginine-fructose), AFG (arginine-fructose-glucose), and maltol were newly generated or their concentrations were increased. Conclusion: This study elucidates the dynamic changes in the chemical components of P. ginseng when the steaming process was induced. These results are thought to be helpful for quality control and standardization of herbal drugs using P. ginseng and they also provide a scientific basis for pharmacological research of processed ginseng (Red ginseng).


  1. Soldati F. Panax ginseng; Standardization and Biological Activity. In: Cutler SJ, Cutler HG, editors. Biologically active natural products. New York: CRC Press; 2000. p. 209-32.
  2. Baeg IH, So SH. The world ginseng market and the ginseng (Korea). J Ginseng Res 2013;37:1-7.
  3. Choi KT. Botanical characteristics, pharmacological effects and medicinal components of Korean Panax ginseng CA Meyer. Acta Pharmacol Sin 2008;29: 1109-18.
  4. Christensen LP. Ginsenoside: Chemistry, Biosynthesis, Analysis and Potential Health Effects. Adv Food Nutr Res 2008;55:1-99.
  5. Lau AJ, Woo SO, Koh HL. Analysis of saponins in raw and steamed Panax notoginseng using high-performance liquid chromatography with diode array detection. J Chromatogr A 2003;1011:77-87.
  6. Du XW, Wills RBH, Stuart DL. Changes in neutral and malonyl ginsenosides in American ginseng (Panax quinquefolium) during drying, storage and ethanolic extraction. Food Chem 2004;86:155-9.
  7. Lau AJ, Seo BH, Woo SO, Koh HL. High-performance liquid chromatographic method with quantitative comparisons of whole chromatogram of raw and steamed Panax notiginseng. J Chromatogr A 2004;1057:141-9.
  8. Wang D, Liao PY, Zhu HT, Chen KK, Xu M, Zhang YJ, Yang CR. The processing of Panax notoginseng and the transformation of its saponin components. Food Chem 2012;132:1808-13.
  9. Sun BS, Xu MY, Li Z, Wang YB, Sung CK. UPLC-Q-TOF-MS/MS analysis for steaming times-dependent profiling of steamed Panax quinquefolius and its ginsenosides transformations induced by repetitious steaming. J Ginseng Res 2012;36:277-90.
  10. Chu C, Xu S, Li X, Yan J, Liu L. Profiling the ginsenosides of three ginseng products by LC-Q-Tof/MS. J Food Sci 2013;78:653-9.
  11. Xie YY, Luo D, Cheng YJ, Ma JF, Wang YM, Liang QL, Luo GA. Steaming-induced chemical transformations and holistic quality assessment of red ginseng derived from Panax ginseng by means of HPLC-ESI-MS/MS based multicomponent quantification fingerprint. J Agric Food Chem 2012;60:8213-24.
  12. Jung MY, Jeon BS, Bock JY. Free, esterified, and insoluble-bound phenolic acids in white and red Korean ginsengs (Panax ginseng C.A. Meyer). Food Chem 2002;79:105-11.
  13. Chung IM, Kim JW, Seguin P, Jun YM, Kim SH. Ginsenosides and phenolics in fresh and processed Korean ginseng (Panax ginseng C.A. Meyer): Effects of cultivation location, year, and storage period. Food Chem 2012;130:73-83.
  14. Cho EJ, Piao XL, Jang MH, Baek SH, Kim HY, Kang KS, Kwon SW, Park JH. The effect of steaming on the free amino acid contents and antioxidant activity of Panax ginseng. Food Chem 2008;107:876-82.
  15. Park JI, Han SB, Kim JM, Piao L, Kwon SW, Lim NY, Kang TL, Park MK, Park JH. Four new acetylated ginsenosides from processed ginseng (Sun Ginseng). Arch Pharm Res 2002;25:837-41.
  16. Kang KS, Yamabe N, Kim HY, Okamoto T, Sei Y, Yokozawa T. Increase in the free radical scavenging activities of American ginseng by heat processing and its safety evaluation. J Ethnopharmacol 2007;113:225-32.
  17. Lee YJ, Kim HY, Kang KS, Lee JG, Yokozawa T, Park JH. The chemical and hydroxyl radical scavenging activity changes of ginsenoside-Rb1 by heat processing. Bioorg Med Chem Lett 2008;18:4515-20.
  18. Sun S, Wang CZ, Tong R, Li XL, Fishbein A, Wang Q, He TC, Du W, Yuan CS. Effects of steaming the root of Panax notoginseng on chemical composition and anticancer activities. Food Chem 2010;118:307-14.
  19. Toh DF, New LS, Koh HL. Chan Eric CY. Ultra-high performance liquid chromatography/time-of-flight mass spectrometry (UHPLC/TOFMS) for timedependent profiling of raw and steamed Panax notoginseng. J Pharm Biomed Anal 2010;52:43-50.
  20. Zhang HM, Li SL, Zhang H, Wang Y, Zhao ZL, Chen SL. Holistic quality evaluation of commercial white and red ginseng using a UPLC-QTOF-MS/MS-based metabolomics approach. J Pharm Biomed Anal 2012;62:258-73.
  21. Park HW, In G, Lee MW, Kim SY, Kim KT, Cho BG, Han GH, Chang IM. Simultaneous determination of 30 ginsenosides in Panax ginseng preparations using ultra performance liquid chromatography. J Ginseng Res 2013;37:457-67.
  22. Court WA, Hendel JG, Elmi J. Reversed-phase high-performance liquid chromatographic determination of ginsenosides of Panax quinquefolium. J Chromatogr A 1996;755:11-7.
  23. Joo KM, Park CW, Jeong HJ, Lee SJ, Chang IS. Simultaneous determination of two amadori compounds in Korean red ginseng (Panax ginseng) extracts and rat plasma by high-performance anion-exchange chromatography with pulsed amperometric detection. J Chromatogr B 2008;865:159-66.
  24. Risner CH, Kiser MJ. High-performance liquid chromatography procedure for the determination of flavor enhancers in consumer chocolate products and artificial flavors. J Sci Food Agric 2008;88:1423-30.
  25. Ermer J. Validation in pharmaceutical analysis. Part I: An integrated approach. J Pharm Biomed Anal 2001;24:755-67.
  26. Kitagawa I, Taniyama T, Yoshikawa M, Ikenishi Y, Nakagawa Y. Chemical studies on crude drug processing. VI. Chemical structures of malonylginsenosides Rb1, Rb2, Rc, and Rd isolated from the root of Panax ginseng C.A. Meyer. Chem Pharm Bull 1989;37:2961-70.
  27. Kite GC, Howes M-JR, Leon CJ, Simmonds MSJ. Liquid chromatography/mass spectrometry of malonyl-ginsenosides in the authentication of ginseng. Rapid Commun Mass Spectrom 2003;17:238-44.
  28. Du Q-Q, Liu S-Y, Xu R-F, Li M, Song F-R, Liu Z-Q. Studies on structures and activities of initial Maillard reaction products by electrospray ionization mass spectrometry combined with liquid chromatography in processing of red ginseng. Food Chem 2012;135:832-8.