An analytical study on the fire characteristics of the small tunnel with large smoke exhaust port

대배기구 배연방식을 적용한 소형차 전용 터널의 화재특성에 관한 해석적 연구

  • Yoo, Ji-Oh (Dep. of Automotive Engineering, Shin-Han University) ;
  • Kim, Jin-Su (Fire Disaster Prevention Research Center, Incheon National University) ;
  • Rhee, Kwan-Seok (Dep. of Mechanical and Automotive Engineering, Kong-Ju National University)
  • 유지오 (신한대학교 자동차공학과) ;
  • 김진수 (인천대학교 소방방재연구센터) ;
  • 이관석 (공주대학교 기계자동차공학부)
  • Received : 2017.03.17
  • Accepted : 2017.04.28
  • Published : 2017.05.31


In order to solve the traffic congest and environmental issues, small-cross section tunnel for small car only is increasing, but there is not standard for installation of disaster prevention facility. In this study, in order to investigate the behavioral characteristics of thermal environment and smoke in a small cross section tunnels with a large port exhaust ventilation system, the A86, the U-Smartway and the Seobu moterawy tunnel, Temperature and CO concentration in case of fire according to cross sectional area, heat release rate and exhaust air flow rate were analyzed by numerical analysis and the results were as follows. As the cross-sectional area of the tunnel decreases, the temperature of the fire zone increases and the rate of temperature rise is not significantly affected by heat release rate. However, there is a difference depending on the change of the exhaust air flow rate. In the case of applying the exhaust air flow rate $Q_3+2.5Ar$ of the large port exhaust ventilation system, the temperature of the fire zone was 7.1 times for A86 ($Ar=25.3m^2$) and 5.4 time for U-smartway ($Ar=37.32m^2$) by Seobu moterway tunnel ($Ar=46.67m^2$). The CO concentration of fire zone also showed the same tendency. The A86 tunnels were 10.7 times and the U-Smartways were 9.5 times more than the Seobu moterway. Therefore, in the case of a small section tunnel, the thermal environment and noxious gas concentration due to the reduction of the cross-sectional area are expected to increase significantly more than the cross-sectional reduction rate.

교통난 해소와 녹지공간의 확보를 위해서 도심지 소형차 전용 소단면 터널이 증가하는 추세이나 소단면 터널에 대한 방재시설 설치를 위한 기준은 미비한 실정이다. 이에 본 연구에서는 대배기구 방식을 적용한 소단면 터널에서 화재가 발생하는 경우 열환경 및 유해가스(CO)의 농도 특성을 고찰하기 위해 A86터널, 서울시에서 계획한 바 있는 U-Smartway터널, 서부간선터널을 모델로 하여 터널 단면적, 화재강도 및 배연풍량에 따른 화재시 터널내 온도 및 유해가스농도를 수치해석적인 방법으로 해석하고 비교 검토하였으며, 다음과 같은 결과를 얻었다. 터널 단면적이 감소하면 화원부의 온도는 증가하나 온도 상승률이 화재강도변화에 미치는 영향은 적다. 그러나 배연풍량 변화에 따라 큰 차이가 발생한다. 대배 기구 방식의 배연풍량으로 Q3+2.5Ar을 적용하는 경우, 화원부 온도는 서부간선터널($Ar=46.67m^2$)을 기준으로 하는 경우, A86($Ar=25.3m^2$)은 7.1배, U-smartway($Ar=37.32m^2$)는 5.4배가 증가하는 것으로 나타났다. 또한 화원부의 CO농도도 동일한 경향을 보이고 있으며, 서부간선터널 대비 A86터널은 10.7배 U-Smartway는 9.5배로 나타났다. 따라서 소단면 터널의 경우, 단면적감소에 따른 열환경 및 유해가스농도는 단면적 감소율 보다 상당히 크게 증가할 것으로 예상된다.



Grant : 대심도 복층터널 설계 및 시공 기술개발

Supported by : 국토교통과학기술진흥원


  1. Byun, S.H., Jeong, J.H., Jun, D. C., Shin, I.J., Sim, D.H. (2011), "A case study on M & E design for double-deck tunnel in urban area. Tunnel and Underground Space", Vol. 21, No. 4, pp. 281-286.
  2. Ingason, H. (2006), "Design fires in tunnels. Safe & reliable tunnels, innovative european achievements", In Second International Symposium, Lausanne, pp. 1-11.
  3. Ingason, H. (2006), "Fire growth rate is more important than maximum heat release rate in tunnel fires", Tunnel Management International, No. 9, p. 2.
  4. Lacroix, D. (1997), "New french recommendations for fire ventilation in road tunnels", In Bhr Group Conference Series Publication, Vol. 27, pp. 103-124. (Mechanical Engineering Publications Limited. )
  5. Lee, H.K., Kang, H.W., Kim, H.S., Kim, H.M. (2013), "A study on the selection of optimal cross section according to the ventilation system in TBM road tunnels", Journal of Korean Tunnelling and Underground Space Association, Vol. 15, No. 2, pp. 135-148.
  6. Ministry of Land. (2015), Guidelines for the installation and management of road tunnel emergency facilities. South Korea.
  7. Moon, H.K., Kil, K.O., Song, I.C., Lee, H.Y. (2016), "A study on site selection criteria and discharge capability evaluation for the multi-purpose use of a double-deck tunnel in a great depth", Journal of Korean Tunnelling and Underground Space Association, Vol. 18, No. 3, pp. 283-290.
  8. Opstad, K. (2006), "Fire scenarios to be recommended by UPTUN WP2 Task leader meeting of WP2", In Proc. of the 2nd International Symposium on Safe & Reliable Tunnels and Innovative European Achievements, Lausanne.
  9. Park, J.O., Yoo, Y.H., Kim, H.S., Park, B.J. (2016), "Experimental study on the fire behavior in double deck tunnel", Fire Science and Engineering, Vol. 30, No. 2, pp. 75-80.
  10. PIARC. (2016), Road Tunnels: Complex Underground Road Networks. Belgium.
  11. Tunnelling and Underground Space Association. (2009), "Ho-Nam railway vehicle fire intensity and quantitative risk assessment(QRA)", South Korea.
  12. Yoo, J.O., Kim, J.S., Rie, D.H., Shin, H.J. (2015), "The effect of a risk factor on quantitative risk assessment in railway tunnel", Journal of Korean Tunnelling and Underground Space Association, Vol. 17, No. 2, pp. 117-125.
  13. Yoo, J.O., Kim, J.S., Rie, D.H., Kim, J.W. (2015), "A study on evacuation characteristic by cross-sectional areas and smoke control velocity at railway tunnel fire", Journal of Korean Tunnelling and Underground Space Association, Vol. 17, No. 3, pp. 215-226.