DOI QR코드

DOI QR Code

Modified Exposure Fusion with Improved Exposure Adjustment Using Histogram and Gamma Correction

히스토그램과 감마보정 기반의 노출 조정을 이용한 다중 노출 영상 합성 기법

  • Park, Imjae (Department of Electronics and Computer Engineering, Hanyang University) ;
  • Park, Deajun (Department of Electronics and Computer Engineering, Hanyang University) ;
  • Jeong, Jechang (Department of Electronics and Computer Engineering, Hanyang University)
  • 박임재 (한양대학교 전자컴퓨터통신공학과) ;
  • 박대준 (한양대학교 전자컴퓨터통신공학과) ;
  • 정제창 (한양대학교 전자컴퓨터통신공학과)
  • Received : 2017.03.06
  • Accepted : 2017.05.19
  • Published : 2017.05.30

Abstract

Exposure fusion is a typical image fusion technique to generate a high dynamic range image by combining two or more different exposure images. In this paper, we propose block-based exposure adjustment considering unique characteristics of human visual system and improved saturation measure to get weight map. Proposed exposure adjustment artificially corrects intensity values of each input images considering human visual system, efficiently preserving details in the result image of exposure fusion. The improved saturation measure is used to make a weight map that effectively reflects the saturation region in the input images. We show the superiority of the proposed algorithm through subjective image quality, MEF-SSIM, and execution time comparison with the conventional exposure fusion algorithm.

노출 합성은 두 장 이상의 서로 다른 노출 값을 갖는 좁은 동적 영역 영상을 합쳐 한 장의 넓은 동적 영역을 갖는 결과 영상을 생성하는 알고리듬이다. 본 논문은 블록기반의 지역적 특성을 고려한 노출 조정 기법과 개선된 채도 특성 요소를 이용해 가중치 맵을 생성하는 알고리듬을 제안한다. 제안하는 노출 조정 기법은 인간시각체계의 특성을 고려하여 입력 영상의 노출 값을 보정함으로써 노출 합성 결과 영상 내의 세밀한 부분을 효과적으로 보존한다. 개선된 채도 영상은 입력 영상 내의 포화 영역을 효과적으로 반영한 가중치맵을 생성한다. 본 논문은 기존의 대표적인 노출 합성 알고리듬과의 주관적 화질과 MEF-SSIM, 수행 시간 비교를 통해 제안하는 알고리듬의 우수성을 입증하였다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. J. A. Ferwerda, S, N. Pattanaik, P. Shirley, and D. P Greenberg, "A model of visual adaptation for realistic image synthesis," Proceedings of the 23rd annual conference on Computer graphics and interactive techniques, ACM, pp.249-258, 1996.
  2. P. E. Debevec, and J. Malik, "Recovering high dynamic range radiance maps from photographs," SIGRAPTH 1997: Proceedings of the 24th annual conference on Computer graphics and interactive techniques, pp. 369-378, 1997.
  3. T. Park, and I. Park, "HDR Image Acquisition from Two LDR Images," Journal of Broadcast Engineering, vol. 16, no. 2, pp.247-257, March 2011. https://doi.org/10.5909/JEB.2011.16.2.247
  4. T. Mertens, J. Kautz, and F. Van Reeth, "Exposure fusion: A simple and practical alternative to high dynamic range photography," Computer Graphics Forum, vol. 28, no. 1, pp. 161-171, 2009. https://doi.org/10.1111/j.1467-8659.2008.01171.x
  5. P. Burt, and E. Adelson, "The Laplacian pyramid as a compact image code," IEEE Transactions on communications, vol. 31, no. 4, pp.532-540, 1983. https://doi.org/10.1109/TCOM.1983.1095851
  6. T. Kil, and N. Cho, "Image Fusion using RGB and Near Infrared Image," Journal of Broadcast Engineering, vol. 21, no. 4, pp. 515-524, July 2016. https://doi.org/10.5909/JBE.2016.21.4.515
  7. H. Ryu, and B. Song, "Non-uniform Deblur Algorithm using Gyro Sensor and Different Exposure Image Pair," Journal of Broadcast Engineering, vol. 21, no. 2, pp.200-209, March 2016. https://doi.org/10.5909/JBE.2016.21.2.200
  8. Z. G. Li, J. H. Zheng, and S. Rahardja, "Detail-Enhanced Exposure Fusion," IEEE Transactions on Image Processing, vol. 21, no. 11, pp. 4672-4676, 2012. https://doi.org/10.1109/TIP.2012.2207396
  9. K. Ma, and Z. Wang, "Multi-exposure image fusion: A patch-wise approach," IEEE International Conference on Image Processing, pp.1717-1721, 2015.
  10. S. Peter, D. Androutsos, and M. Kyan, "Adaptive exposure fusion for high dynamic range imaging," IEEE International Conference on. Image Processing, pp. 4679-4683, 2015.
  11. Color conversions, http://docs.opencv.org/3.1.0/de/d25/imgproc_color_conversions.html#color_convert_rgb_lab.
  12. R. C. Gonzalez, and R. E. Woods. "Digital image processing," Pearson, New Jersey, 2010.
  13. J. Duan, M. Bressan, C. Dance, and G. Qiu, "Tone-mapping high dynamic range images by novel histogram adjustment," Pattern Recognition, vol. 43, no. 5, pp.1847-1862, 2010. https://doi.org/10.1016/j.patcog.2009.12.006
  14. H. Yeganeh, and Z. Wang, "Objective quality assessment of tone-mapped images," IEEE Transactions on Image Processing, vol. 22, no. 2, pp.657-667, 2013. https://doi.org/10.1109/TIP.2012.2221725
  15. K. Ma, K. Zeng, and Z. Wang, "Perceptual quality assessment for multi-exposure image fusion," IEEE Transactions on Image Processing, vol. 24, no.11, pp. 3345-3356, 2015. https://doi.org/10.1109/TIP.2015.2442920
  16. M. Pedersen, "Exposure fusion algorithm based on perceptual contrast and dynamic adjustment of well-exposedness," International Conference on Image and Signal Processing, Springer International Publishing, pp. 183-192, 2014.